首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a low‐cost diatomite was used to partly substitute wheat flour as one type of melamine–urea–formaldehyde (MUF) resin filler. Five‐ply plywood was fabricated, and its performance was measured. The crystallinity, fracture surface, and functional groups were tested to determine the effects of diatomite on the performance of the MUF resin. The results show that diatomite was well distributed in the MUF resin system and formed an embedding structure; this improved the wet shear strength of the resulting plywood by 33% to 1.36 MPa. Diatomite captured the free formaldehyde in the resin and the microporous structure formed in the resin accelerate formaldehyde release of the plywood. Consequently, the formaldehyde emission of the plywood was reduced. The diatomite partly replaced wheat flour as an MUF resin filler and could be applied in the plywood industry. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44095.  相似文献   

2.
Soybean meal flour, polyethylene glycol (PEG), sodium hydroxide (NaOH), and a melamine-urea-formaldehyde (MUF) resin were used to formulate soybean meal/MUF resin adhesive. Effects of the adhesive components on the water resistance and formaldehyde emission were measured on three-ply plywood. The viscosity and solid content of the different adhesive formulations were measured. The functional groups of the cured adhesives were evaluated. The results showed that the wet shear strength of plywood bonded by soybean meal/NaOH adhesive increased by 33% to 0.61 MPa after adding NaOH into the adhesive formulation. Addition of PEG reduced the viscosity of the soybean meal/NaOH/PEG adhesive by 91% to 34,489 cP. By using the MUF resin, the solid content of the soybean meal/MUF resin adhesive was improved to 39.2%, the viscosity of the adhesive was further reduced by 37% to 21,727 cP, and the wet shear strength of plywood bonded by the adhesive was increased to 0.95 MPa, which met the interior plywood requirements (≥0.7 MPa). The formaldehyde emission of plywood bonded by the soybean meal/MUF resin adhesive was obtained at 0.28 mg/L, which met the strictest requirement of the China National Standard (≤0.5 mg/L). FTIR showed using the MUF resin formed more  CH2 group in the cured adhesive. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Wang  Hui  Wang  Feng  Du  Guanben 《Iranian Polymer Journal》2019,28(12):1015-1021

To eliminate the hazard of formaldehyde from wood-based products to human and environment, formaldehyde was replaced by glyoxal to produce wood adhesive. Urea–glyoxal (UG) resin was environmental friendly, while its bonding strength was very poor, especially its water resistance. The object of this work was to improve the mechanical properties of UG resin by oxidized cassava starch addition. Hence, the urea–glyoxal (UG) resin was synthesized and the oxidized cassava starch was added through mechanical mixing. The bonding strength, structure distributions, and the morphology features of the cured UG resin system were investigated by producing a three-layer plywood, FTIR, and SEM analysis. The results of dry and wet shear strength of plywood indicated that there was a positive effect of oxidized cassava starch on bonding strength of a three-layer plywood, and when the oxidized cassava starch content was increased to 45%, the dry strength could reach 1.21 MPa, and the wet strength was 0.72 MPa. The FTIR results showed that chemical reaction between UG resin and oxidized cassava starch was beneficial to the branched structure formation and higher cohesion strength of UG resin. Meanwhile, the tightness structure of enhanced UG resin system was observed by SEM analysis as well. These improved properties were contributed to water resistance improvement of UG resin.

  相似文献   

4.
三聚氰胺-尿素-甲醛共缩聚树脂胶粘剂的研制   总被引:1,自引:1,他引:0  
通过合成三聚氰胺-尿素-甲醛树脂(MUF)胶粘剂,探讨了三聚氰胺用量对该MUF胶粘剂耐水性和其它性能的影响。结果表明:随着三聚氰胺用量的增加,MUF胶粘剂的耐水性能提高、固含量增大、固化时间和储存期延长,并且胶合板剪切强度增大,但MUF胶粘剂中游离醛含量降低;当w(三聚氰胺)40%时,MUF胶粘剂性能提高并不明显,为了降低成本,选择w(三聚氰胺)=30%~40%时较适宜;三聚氰胺用量不同是影响MUF结构和基团含量的主要因素。  相似文献   

5.
改性三聚氰胺-尿素-甲醛共缩聚树脂胶粘剂的合成   总被引:1,自引:0,他引:1  
通过三聚氰胺-尿素-甲醛(MUF)共缩聚树脂胶粘剂的合成,探讨了三聚氰胺的用量对该MUF树脂耐水性能的影响及其规律。实验结果表明,当w(三聚氰胺)=43%~65%时,该MUF树脂的湿强度从0.93 MPa增加到2.74 MPa,耐沸水性明显提高;但是,当w(三聚氰胺)>65%时,该MUF树脂的湿强度增长极其缓慢,其耐沸水性提高并不明显;通过引入复合改性剂和适量的水,可使该MUF树脂的游离甲醛含量降低50%、成本降低10%~15%、固含量基本不变、胶合强度和耐沸水性均有所提高且适用期良好。  相似文献   

6.
以甲醛( F)、尿素( U)、三聚氰胺( M)为原料,采用弱碱-弱酸-弱碱工艺合成了三聚氰胺-尿素-甲醛( MUF)共聚树脂胶,配方中F与U物质的量之比为(1.2-1.5)∶1,F与(U+M)物质的量比为(1.1-1.2)∶1。在不同的反应阶段取样,采用IR和13C NMR对过程中所取样品进行了分析。结果表明,反应开始的碱性阶段主要生成二羟甲基三聚氰胺,在弱酸性阶段缩聚反应时分子间以醚键和亚甲基键联接为主。用反应最终产物压制的杨木胶合板,胶合强度1.07 MPa,甲醛释放量0.38 mg/L,浸渍剥离试验无剥离,达到E0级,胶合强度达到Ⅱ类板的要求(0.7 MPa)。  相似文献   

7.
The desire to prepare a lower-cost soy-based adhesive has led to an interest in using the abundant and inexpensive soy flour (SF) as a substitute for expensive soy protein isolates (SPI) in wood adhesives. However, the weakness of this adhesive is poor water-resistance and bonding strength due to a low protein content, which limits its application in the wood industry. The objective of this research was to provide a simple and useful approach for improving the adhesion performance of SF-based adhesive by introducing a small addition of melamine-urea-formaldehyde (MUF) resin into the cured system. The optimum addition level of MUF resin, as well as the adhesion performance and conformation change of SF-based adhesive, were investigated. The analytical results indicated that the co-condensed methylene bridges were formed through the reaction of methylol groups of MUF resin with soy units during the hot-press process. The addition of MUF resin, not only significantly decrease the viscosity of SF-based adhesive but also increase its water-resistance and wet shear strength value. The SF-based adhesive containing 20% MUF resin, is a relatively low-cost adhesive, has a reasonable viscosity, and moreover can pass the Chinese Industrial Standard requirement (0.7 MPa) for interior plywood panels.  相似文献   

8.
A brominated phenol–formaldehyde resin was investigated as a plywood adhesive to study the effect of bromine on the physical and flammability properties of this resin. The results of these studies showed that brominated phenol–formaldehyde resin of 10% bromine content by weight of the phenol–formaldehyde resin was suitable to be used as a plywood adhesive. The optimal compressing temperature and compressing time were 110°C and 30 min, respectively. The prepared plywood obtained from the optimal condition gave a high shear strength, good flame retardancy, and good resistance to both hot and cold water. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1918–1924, 2003  相似文献   

9.
The study investigated the use of tobacco (Nicotiana tabacum L) stalk particles as additive with both extender and filler property in urea formaldehyde adhesive formulation used to bond Paraserianthes falcataria (L) Nielsen veneers into plywood. The effect of varying amount of tobacco stalk particles on adhesive working properties, shear strength and wood failure of 3-ply plywood was investigated. Adhesive mix containing urea formaldehyde resin with tobacco stalk particles up to 8% by mass blended very well and remained stable for atleast 1?hour. An increase or no significant effect on shear strength and wood failure up to 8% tobacco stalk loading was observed compared to plywood that used a commercial glue formulation. Based on shear strength and wood failure, panels containing 4–8% tobacco stalk particles would pass the requirements of ISO 12466-2. Examination of adhesive penetration and plywood strength suggest that tobacco particles could function as both filler and extender. Tobacco stalk particles offer an environmentally friendly, low cost, strong and non-abrasive alternative to conventional fibers used in plywood production.  相似文献   

10.
The effect of nano cupric oxide (CuO) in combination with surfactants on the curing characteristics of phenol formaldehyde (PF) resin analyzed using solid 13C CP/MAS NMR, including the bonding strength of plywood prepared by modified resin, was investigated in this study. The results showed that nano CuO alone improved the cure of PF resin. The intensity of the functional groups of the PF mixture was maintained during the curing process as sodium lignosulfonate was simultaneously introduced. Furthermore, nano CuO and alkane surfactant together modified the PF resin conformation. The shear strength of the plywood showed that the addition of nano CuO (1%) alone or in combination with alkane surfactant (0.55%) or sodium lignosulfonate (0.55%) to the PF resin mixture was effective. And this approach met the important criteria for its application in the manufacture of plywood. POLYM. COMPOS., 35:113–117, 2014. © 2013 Society of Plastics Engineers  相似文献   

11.
为探究制胶阶段和压板阶段的6个因素(生物油替代率、醛酚比、热压温度、热压时间、热压压力、涂胶量)对胶合板中甲醛和总挥发性有机物(TVOC)含量的影响,在单因素试验基础上,设计L25(56)正交试验对工艺参数进行优化.采用顶空固相微萃取法(HS-SPME)和气相色谱/质谱(GC/MS)联用技术对生物油酚醛树脂胶合板(BP...  相似文献   

12.
The aim of this research was to investigate the physical and mechanical properties of plywood panels bonded with ionic liquid-modified lignin–phenol–formaldehyde (LPF) resin. For this purpose, soda bagasse lignin was modified by 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) ionic liquid, and then, various contents of modified lignins (10, 15, and 20 wt%) were added as a substitute of phenol in phenol–formaldehyde (PF) resin synthesis. The properties of the synthesized resin were compared with those of a control PF resin. The changes in curing behavior of the resins prepared were analyzed by differential scanning calorimetry (DSC). The physical properties of the resins prepared, as well as the water absorption, thickness swelling, shear strength, and formaldehyde emission of the plywood panels bonded with these adhesives, were measured according to standard methods. DSC analysis indicated that in comparison with PF resins, curing of the LPF resin occurred at lower temperatures. The physical properties of the synthesized resins indicated that viscosity and solid content increased, while gel time and density decreased by addition of treated lignin to the PF resin. Although the panels containing resins with modified lignin yielded low formaldehyde emission, their dimensional stability was worse than those bonded with a commercial PF adhesive. The plywood prepared using IL-treated lignin PF resins has shear strength, which satisfy the requirements of the relevant standards specifications and significantly better than that of panels prepared with the control PF resin. The mechanical properties of the panels could be significantly enhanced with increased percentage of treated lignin content from 0 to 20 wt%.  相似文献   

13.
An investigation was made of the effects of extraction and various chemicals applied on veneer surface on the wettability and gluing properties of apitong, Dipterocarpus grandiflorus Blanco, using urea formaldehyde resin. Wettability was determined by measuring contact angles with distilled water.

It was found that extraction with methanol-benzene greatly improved the wettability and gluability of apitong veneer. Likewise, surface treatment with methanol-benzene significantly increased the wettability of the veneer as well as the dry and wet shear strengths of the resulting bond. Treatment with sodium hydroxide increased both wettability and dry shear, but decreased the wet shear strength of the bond. Acetone did not have a significant effect on both wettability and dry shear, but decreased wet shear strength. On the other hand, ether had adverse effects on the wettability and gluability of apitong veneer.

A positive linear correlation was found between wettability and gluability of apitong veneer.  相似文献   

14.
In this study blending PVA with MUF and MF was evaluated as an approach to enhance the performance of PVA towards water and elevated temperatures. MF and MUF were added to PVA at different proportions: 15%, 30%, 50%, 70% and 100%. Blends of PVA with MF and MUF were used as adhesives to bond wood joints. The shear strength of wood joints was measured at dry and wet states, and elevated temperatures. Thermogravimetric analysis was used to study thermal stability of PVA and its blends with MF and MUF. The structural changes caused by the inclusions were characterized by Fourier transforms infrared spectroscopy (FT-IR). The results showed that shear strength of wood joints were improved by the addition of MF and MUF to PVA in all conditions. Adding small amounts of MUF or MF (as low as 15%) enhanced the performance of wood joints towards water and elevated temperatures. The extent of improvement was sometimes so high that the strength of glue line surpassed strength of wood in wet conditions leading to wood failure rather than glue failure. MF had more effectiveness in improving shear strength of wood joints than MUF in all conditions. Thermal stability of PVA was increased by MF but the effect of MUF on thermal stability of PVA was dependent on MUF proportions and temperatures. FT-IR analyses showed that there are some chemical bonds between PVA and MF. Considering costs, effectiveness and formaldehyde emission, adding 15% MF to PVA seems the optimal proportion of MF in the PVA blends.  相似文献   

15.
Tannin from larch (Larix gmelini) bark extracts, as a natural renewable resource, was used to prepare tannin–urea–formaldehyde (TUF) resin. The chemical structures of larch tannin and TUF resin were characterized by matrix‐assisted laser desorption/ionization‐time of flight mass spectrometry and 13C nuclear magnetic resonance. The thermal behaviors of TUF resin were evaluated by differential scanning calorimetry (DSC) and thermomechanical analysis (TMA). The performances of TUF resin were investigated by measuring the bond strength and formaldehyde emission of its bonded plywood. It was clearly shown that larch tannin is mainly composed of prodelphinidin repeating units. Phenolic groups were introduced into TUF resin mainly linked by methylene bond. Larch tannin has an adverse effect on the resin curing. However, it promoted the rigidity and flexibility of the glued system and upgraded the properties of plywood. Therefore, larch tannin could be applied in the modification of urea–formaldehyde resin. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41064.  相似文献   

16.
To lower the formaldehyde emission of wood‐based composite panels bonded with urea–formaldehyde (UF) resin adhesive, this study investigated the influence of acrylamide copolymerization of UF resin adhesives to their chemical structure and performance such as formaldehyde emission, adhesion strength, and mechanical properties of plywood. The acrylamide‐copolymerized UF resin adhesives dramatically reduced the formaldehyde emission of plywood. The 13C‐NMR spectra indicated that the acrylamide has been copolymerized by reacting with either methylene glycol remained or methylol group of UF resin, which subsequently contributed in lowering the formaldehyde emission. In addition, an optimum level for the acrylamide for the copolymerization of UF resin adhesives was determined as 1%, when the formaldehyde emission and adhesion strength of plywood were taken into consideration. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
The aim of this research was to investigate the effect of polymeric 4, 4 diphenyl methane diisocyanate (pMDI) on the physical and mechanical properties of plywood panels bonded with an ionic liquid (IL)-treated lignin-urea-formaldehyde resin. Soda lignin modified by 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) IL was added to a urea formaldehyde (UF) resin during resin synthesis to prepare a lignin-urea-formaldehyde (LUF) resin. pMDI at various contents (2, 4, and 6% on resin solids) was then added to prepare a LUF resin. The thermal and physicochemical properties of the resins prepared as well as the water absorption, shear strength, and formaldehyde emission of the plywood panels bonded with them were measured according to standard methods. DSC analysis indicated that the addition of pMDI decreases the gel onset and curing temperatures of the LUF resin. According to the results obtained, the addition of pMDI significantly increased the viscosity and solid content and accelerated the gelation time of LUF resins. Based on the findings of this research, the addition of pMDI dramatically improves the performance of LUF resins as a new adhesive for wood-based panels. The LUF resins with isocyanate added yielded panels presenting lower formaldehyde emission and lower water absorption content when compared to those bonded with the control LUF resins. Greater dry and wet shear strength can be obtained by a small addition of pMDI to LUF resins.  相似文献   

18.
三聚氰胺添加方式对MUF胶粘剂性能的影响   总被引:1,自引:1,他引:0  
以三聚氰胺作为脲醛树脂(UF)的共聚改性剂制备MUF(三聚氰胺甲醛树脂)胶粘剂。探讨了三聚氰胺的添加方式对MUF胶粘剂性能的影响,同时对其固化特性、分子结构和耐热性等进行了分析。结果表明:三聚氰胺2次投料法可有效降低MUF胶粘剂的甲醛释放量,但其胶接强度也随之下降;同时,该MUF固化体系的外推固化温度、表观活化能和反应级数均有所增加,耐热性降低;另外,2次投料体系使MUF的相对分子质量降低、相对分子质量分布变宽。  相似文献   

19.
The aim of this research was to investigate the influence of lignin modified by ionic liquids on physical and mechanical properties of plywood panels bonded with the urea–formaldehyde (UF) resin. For this purpose, soda bagasse lignin was modified by the 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) ionic liquid and then the various contents of unmodified and modified lignins (10, 15, and 20%) were added at pH=7 instead of second urea during the UF resin synthesis. The physicochemical properties of the prepared resins as well as the water absorption, shear strength, and formaldehyde emission of the plywood panels made with these adhesives were measured according to standard methods. According to Fourier Transform Infrared (FTIR) Spectrometry, by treatment of lignin, the C=O, C–C, and C–H bonds decrease while the content of the C–N bond dramatically increases. Based on the finding of this research, the performance of soda bagasse lignin in UF resins dramatically improves by modification by ILs; as the resins with modified lignin yielded lower formaldehyde emission and water absorption when compared to those made from unmodified lignin and commercial UF adhesives, respectively. The shear strength as well as wood failure percentages are lower for the panels produced with modified lignin than for the panels produced with UF resins alone.  相似文献   

20.
In this study, a green adhesive from renewable lignin and tannin was developed with polyethylenimine (PEI) with a method to improve the water resistance of the lignin/tannin adhesive. Lignin polyols were prepared through the liquefaction of oil‐palm empty fruit bunches. The characteristics of the adhesive samples were compared with those of a commercial phenol–formaldehyde resin. Three plywood specimens bonded with the new adhesive showed a very high tensile strength (63.04 MPa) and were very water resistant. The effect of the solid content of the adhesives on the tensile strength and gel time and various weight ratios of PEI on the tensile strength and water resistance of the plywood specimens were evaluated. Thermal stability tests revealed that the lignin polyol–tannin/PEI adhesives had a high heat resistance (360 °C). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43437.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号