首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bio‐nanocomposite films based on polyvinyl alcohol/chitosan (PVA/CS) polymeric blend and cellulose nanocrystals (CNC) were prepared by casting a homogenous and stable aqueous mixture of the three components. CNC used as nanoreinforcing agents were extracted at the nanometric scale from sugarcane bagasse via sulfuric acid hydrolysis; then they were characterized and successfully dispersed into a PVA/CS (50/50, w/w) blend to produce PVA/CS–CNC bio‐nanocomposite films at different CNC contents (0.5, 2.5, 5 wt %). Viscosity measurement of the film‐forming solutions and structural and morphological characterizations of the solid films showed that the CNC are well dispersed into PVA/CS blend forming strong interfacial interactions that provide an enhanced load transfer between polymer chains and CNC, thus improving their properties. The obtained bio‐nanocomposite films are mechanically strong and exhibit improved thermal properties. The addition of 5 wt % CNC within a PVA/CS blend increased the Young's modulus by 105%, the tensile strength by 77%, and the toughness by 68%. Herein, the utilization of Moroccan sugarcane bagasse as raw material to produce high quality CNC has been explored. Additionally, the ability of the as‐isolated CNC to reinforce polymer blends was studied, resulting in the production of the aforementioned bio‐nanocomposite films with improved properties. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42004.  相似文献   

2.
Chitosan (Ch) and N‐carboxymethylchitosan (N‐CMCh) films were prepared by the casting method at concentrations of 1% and 2% of polymer, with or without plasticizer: polyethylene glycol (PEG‐400) and glycerol (G), at 15% (w/w). The influence of composition on mechanical properties, water vapour transmission rate (WVTR), water saturation, and aqueous dissolution of the films was analysed. The thermal stability of the mixture (polymer:plasticizer, 1:1) was evaluated by thermogravimetric analysis (TGA). In general, all the properties were affected by the plasticizers. The plasticized films showed lower strength and a higher percentage of elongation (%E), in the following order: G > PEG‐400 > unplasticized film. The total WVTR increased with Ch concentration, with a different WVTR profile for Ch and N‐CMCh. While the PEG‐400 addition did not significantly modify the WVTR profile of films, the glycerol enhanced the transport of water vapour through both polymers. The plasticizer addition increased the time of water film saturation, in the following order: G > PEG‐400 > unplasticized film; this was more pronounced in the N‐CMCh films, probably due to the formation of hydrogen bonds. The solubility of the films was also affected by their composition. Copyright © 2006 Society of Chemical Industry  相似文献   

3.
Single‐walled carbon nanotube (SWNT)/cellulose nanocomposite films were prepared using N‐methylmorpholine‐N‐oxide (NMMO) monohydrate as a dispersing agent for the acid‐treated SWNTs (A‐SWNTs) as well as a cellulose solvent. The A‐SWNTs were dispersed in both NMMO monohydrate and the nanocomposite film (as confirmed by scanning electron microscopy) because of the strong hydrogen bonds of the A‐SWNTs with NMMO and cellulose. The mechanical properties, thermal properties, and electric conductivity of the nanocomposite films were improved by adding a small amount of the A‐SWNTs to the cellulose. For example, by adding 1 wt % of the A‐SWNTs to the cellulose, tensile strain at break point, Young's modulus, and toughness increased ~ 5.4, ~ 2.2, and ~ 6 times, respectively, the degradation temperature increased to 9°C as compared with those of the pure cellulose film, and the electric conductivities at ? (the wt % of A‐SWNTs in the composite) = 1 and 9 were 4.97 × 10?4 and 3.74 × 10?2 S/cm, respectively. Thus, the A‐SWNT/cellulose nanocomposites are a promising material and can be used for many applications, such as toughened Lyocell fibers, transparent electrodes, and soforth. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Novel nanocomposite films of TiO2 nanoparticles and hydrophobic polymers having polar groups, poly (bisphenol‐A and epichlorohydrin) or copolymer of styrene and maleic anhydride, with high refractive indices, high transparency, no color, solvent‐resistance, good thermal stability, and mechanical properties were prepared by incorporating surface‐modified TiO2 nanoparticles into polymer matrices. In the process of preparing colloidal solution of TiO2 nanoparticles, severe aggregation of particles can be reduced by surface modification using carboxylic acids and long‐chain alkyl amines. These TiO2 nanoparticles dispersed in solvents were found not to aggregate after mixing with polymer solutions. Transparent colorless free‐standing films were obtained by drying a mixture of TiO2 nanoparticles colloidal solution and polymer solutions in vacuum. Transmission electronic microscopic studies of the films suggest that the TiO2 nanoparticles of 3–6 nm in diameter were dispersed in polymer matrices while maintaining their original size. Thermogravimetric analysis results indicate that the nanocomposite film has good thermal stability and the weight fraction of observed TiO2 nanoparticles in the film is in good accordance with that of theoretical calculations. The refractive index of nanocomposite films of TiO2 and poly(bisphenol‐A and epichlorohydrin) was in the range of 1.58–1.81 at 589 nm, which linearly increased with the content of TiO2 nanoparticles from 0 to 80 wt %. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

5.
The present study investigated the fabrication and characterization of bio-based sustainable films composed of a terrestrial plant raw material, namely Opuntia ficus-indica (OFI) cladodes powder (CP) and a marine seaweed derivative, namely agar (A). The effect of glycerol concentration on the properties of the casted films was evaluated at four different contents, namely 30, 40, 50 and 60 wt%. The films present UV-blocking properties, as well as moderate mechanical performance, thermal stability, and water vapor transmission rate (WVTR). The results point to an increase in thickness, elongation at break, moisture content, water solubility, and WVTR with increasing glycerol content. On the contrary, Young's modulus, tensile strength, and water contact angle decreased as glycerol concentration increased. The best combination is obtained for the film with 30% glycerol, based on an intermediate compromise between physical, mechanical, thermal, and barrier properties. All these outcomes express the potentiality of the powder obtained from grinding the OFI cladodes as raw material to produce low-cost films for the development of sustainable packaging materials.  相似文献   

6.
Nanocrystalline cellulose (NCC) has great potential in applications in medical and food packaging due to its abundance, high specific surface area, biodegradability, biocompatibility, and reproducibility. N-Halamine is one of the most effective antibacterial agents, with broad-spectrum efficacy against microorganisms, good stability, and reproducibility. Due to the nanosize effect and high specific surface area of NCC, N-halamine-modified NCC is potentially an excellent biocidal compound. In this paper, an N-halamine precursor 1-hydroxymethyl-5,5-dimethylhydantoin (HDH) was used to modify NCC with cyanuric chloride (cych) as the bonding agent. After chlorination, the produced NCC-cych-HDH-Cl became antibacterial. The synthesized NCC-cych-HDH-Cl was added to a chitosan (CS) and polyvinyl alcohol (PVA) solution to prepare antibacterial films. The optimum mixing ratio of PVA and CS in the PVA/CS films and concentration of NCC-cych-HDH-Cl were investigated. The surface morphologies and mechanical properties of the antibacterial films were characterized with scanning electron microscopy, transmission electron microscopy, and mechanical strength tests. The results indicated that the film with 90/10 PVA/CS and 7.0% loading of NCC-cych-HDH-Cl exhibited excellent tensile strength. The antibacterial film with 5.91 × 1017 atoms/cm2 of active chlorine displayed an excellent antibacterial property against Staphylococcus aureus (ATCC 6538) and Escherichia coli O157:H7 (ATCC 43895). © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47101.  相似文献   

7.
Series of polyimide (PI)/mesoporous silica nanospheres (MSNs) nanocomposite films with different contents of MSNs were successfully prepared via a simple wet impregnation method. The morphologies, microstructures, mechanical properties, transmittance, and thermal properties of the prepared PI and the PI/MSNs nanocomposite films were investigated in detail. As a result, the thermal stability and mechanical performances of PI were obviously improved by incorporating MSNs into PI. The tensile stress and Young's modulus of the nanocomposite film with 5 wt % MSNs were raised up to 97.65 MPa and 2220.06 MPa, which are greatly higher than the values of 82.51 MPa and 1440.86 MPa for the pure PI film. Experimental results confirmed that the designed polymerization tactic, which occurred in the pores of the MSNs, facilitated to enhance the mechanical and physical performances of the PI/MSNs nanocomposite films, and definitely induced better integration between organic matrix and inorganic nanofillers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41173.  相似文献   

8.
合成了三种酰胺化纳米晶纤维素,并采用溶液共混成膜法制备了酰胺化纳米晶纤维素(CNC)/乙烯醋酸乙烯醋共聚物(EVA)复合膜材料。通过紫外-可见分光光度计、电子万能试验机和透湿仪研究了酰胺化CNC/ EVA复合膜的光学性能、力学性能以及水蒸气阻隔性,并通过原子力显微镜研究热压处理的EVA复合膜的表面形貌。结果表明,添加三种不同碳链的酰胺化CNC都使 EVA膜的透光率有所降低,当添加量为5 %时,EVA膜透光率仍高达90%。一定程度的热压能够让酰胺化纳米晶纤维素在EVA基体中分散更均匀,使EVA复合膜的透光率提高了2%~3%;随着纳米晶纤维素含量的逐渐增加,三种酰胺化CNC/EVA膜的拉伸强度均逐渐增强,透湿率(WVTR值)均减小;酰胺化CNC含量相同时, 十六胺改性的纳米晶纤维素(CNC-N16)/EVA复合膜的力学性能和水蒸气阻隔效果优于相应的十二胺和正辛胺。  相似文献   

9.
Building blocks made from renewable sources attract increasing attention for the design of new polymer systems. Recently, in this particular context, cellulose nanocrystals (CNCs) have gained great interest in both academic research and industry, mainly on account of their ability to reinforce range of polymer matrices and afford nanocomposites with attractive mechanical properties. The limited thermal stability of conventionally produced cellulose nanocrystals (CNCs) has, however, so far limited the range of polymers that could be used as basis for melt‐processed CNC nanocomposites. We herein show that a commercially accessible nanocrystal source, a particular grade of microcrystalline cellulose (MCC), can easily be converted into thermally stable CNCs by ultrasonication in phosphoric acid. A scalable melt‐mixing process was used to produce nanocomposites of these CNCs with a thermoplastic polyurethane (TPU) elastomer. A significant improvement of the room temperature storage modulus from 40 MPa (neat polymer) to 120 MPa (10% w/w CNC) was observed. The introduction of CNCs not only increased the stiffness of the polymer matrix, but also improved the shape memory properties of the nanocomposite. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45033.  相似文献   

10.
Organic photovoltaics (OPVs) offer the potential for ultralow cost mass‐producible photovoltaic devices. Other advantages are light weight and good mechanical flexibility. To further reduce the cost, the replacement of the conventional conducting substrates for cellulose is an interesting choice. There are three main types of nanocellulose materials: nanofibrillated cellulose (NFC), nanocrystalline cellulose (CNC), and bacterial nanocellulose. In this work, the synthesis of two types of nanocellulose substrates and their application in OPVs were achieved. For the first time, the different properties of the cellulose substrates and their influence on the OPV performance were addressed. The nanocellulose substrates CNC and NFC were characterized by XRD, AFM, and DSC. CNC films were more homogeneous, smoother, crystalline and with low roughness. Thus, when comparing the cellulosic substrates, the best device the one based on CNC. The PCE values of the inverted OPV cells were 3.0, 1.4, and 0.5% on to glass, CNC and NFC substrates. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43679.  相似文献   

11.
Cling films and single-use plastics are difficult to recycle and cause major environmental pollution, leading to an increase in microplastics in nature. To overcome this issue, biodegradable films are being explored more extensively. Seaweed is gaining prominence in the food packaging sector since it is beneficial in all aspects. Two fractions of Indian brown seaweed Sargassum wightii, biopolymer (sulfated polysaccharide [SP]) as base material and nanofillers (cellulose nanocrystals [CNC]) as reinforced filler are employed to develop a sustainable cling film for food packaging. This cellulose filler can be isolated from solid seaweed biomass after the polysaccharide extraction and converted into nanoform using the response surfaces method (RSM) to maximize the yield of CNC. The objective of this research is to construct seaweed-based biodegradable nanocomposite films and to examine their improved properties. It exhibited a gradual decrease in water absorption and water vapor permeability (WVP), along with better wettability, mechanical, and antioxidant properties, and thermal analysis compared with the control SP film. The degradation rates of the films were analyzed using the soil-burial method. According to the results obtained, it is suggested that CNC can be utilized as a functional filler to improve the qualities of seaweed-based cling films.  相似文献   

12.
Highly branched alkoxysilane (HB) units were prepared in situ via a Michael‐type reaction between pentaerythrithol triacrylate and aminopropyltriethoxysilane. These units were used as an inorganic component for the modification of cellulose acetate (CA) films using the sol–gel process. The thermal and dynamic‐mechanical behaviors, the morphology, and the dimensional stability of the modified CA films were analyzed. The siloxane‐modified CA films showed thermal stability similar to pure CA, but the residue content at 900°C increased with the addition of HB units. The morphology of these films was characterized by siloxane nanodomains dispersed in the CA matrix, with good interfacial adhesion between the phases. Moreover, the CA/siloxane nanocomposite films showed improved dimensional stability in comparison with CA, i.e., in the presence of HB, the dimensional change was reduced to around 50% of the value observed for pure CA. Finally, a complex dynamic‐mechanical behavior was obtained for the nanocomposite films, as a consequence of the heterogeneous morphology. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Starch/polyvinyl alcohol (PVA) nanocomposite films by film blowing process were successfully obtained. Starch (1700 g), PVA (300 g), and organically modified montmorillonite (OMMT, 200 g) were blended and plasticized with acetyl tributyl citrate (ATBC) and glycerol (GLY) at weight ratios of 0/100, 5/95, 10/90, 15/85, 20/80, and 25/75. The structural, morphology, barrier, mechanical, and thermal properties of the films, as well as molecular interactions in the nanocomposites were analyzed. The 3.98 nm d‐spacing was the highest in starch/PVA nanocomposite films plasticized with ATBC/GLY ratio of 10/90. The film with ATBC/GLY (5/95) had the lowest WVP (3.01 × 10?10 g m?1 s?1 Pa?1). The longitudinal tensile strength (TS) of starch/PVA nanocomposite films gradually increased from 4.46 to 6.81 MPa with the increase of ATBC/GLY ratios. The Tg steadily increased from 49.2°C to 55.2°C and the ΔH of the nanocomposite films decreased from 81.77 to 51.43 J/g at the presence of ATBC. The addition of ATBC into GLY plasticized starch/PVA/OMMT system enhanced the intermolecular interaction in the nanocomposites. This study proved that ATBC was an excellent compatibilizer in the preparation of starch/PVA/OMMT nanocomposite films. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42544.  相似文献   

14.
In the present work, the crystallinity and crystalline morphology, thermal stability, water barrier, and mechanical properties of ethylene vinyl alcohol copolymer (EVOH) nanocomposites prepared by melt compounding and incorporating both plant (CNW) and bacterial cellulose nanowhiskers (BCNW) are reported. An improvement in the water barrier performance was observed, that is, 67% permeability drop, only for the microcomposite sample incorporating 2 wt % of bacterial cellulose fibrils. No significant differences in the water‐barrier properties of the nanocomposites generated through the two studied preincorporation methods were observed despite the fact that an excellent dispersion was observed in the previous study. On the other hand, direct melt‐mixing of the freeze‐dried nanofiller with EVOH resulted in increased water permeation. The aggregation of the filler in the latter nanocomposite was also ascribed to the detrimental effect on the mechanical properties. Interestingly, by using the precipitation method, an increase in the elastic modulus and tensile strength of ~36 and 22%, respectively, was observed for a 3 wt % BCNW loading, which was thought to coincide with the percolation threshold. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Cellulose nanocrystals (CNCs) prepared via sulfuric acid hydrolysis are decorated with sulfate groups that yield a stable water suspension. To make the CNCs adaptable for use in composites, the hydroxyl groups on the surface are usually hydrophobized. In this article, an alternative hydrophobization method is described in which the sulfate groups are conjugated with azetidinium salts. The results of this study show that the sulfate groups can be functionalized with azetidinium salts and from thermal studies, it was discovered that the functionalization led to a 100 °C increase in thermal stability, compared with unmodified CNCs. The nanocomposites prepared by extrusion of CNC‐coated low‐density polyethylene powder displayed similar mechanical properties as the CNC‐reference sample, but without the discoloration, due to the increased thermal stability. In conclusion, the azetidinium reagent reacts preferentially with sulfate groups, and this new type of chemical conversion of sulfate groups on polysaccharides will be beneficial in nanocomposite manufacturing. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45963.  相似文献   

16.
Antibacterial nanocomposite films of poly(butylene adipate-co-terephthalate) (PBAT) incorporated with different weight percentage of octakis(3-chloropropyl)octasilsesquioxane (chloropropyl functionalized POSS [Cl-fn-POSS]) nanofiller were prepared. The mechanical, thermal, morphological, barrier, and antimicrobial properties were examined. The mechanical properties of the nanocomposite films were enhanced by the addition of Cl-fn-POSS nanofiller. An optimum filler loading of 3 wt% is identified to be best suited for maximum enhancement in tensile strength (24 MPa for 3 wt% filled PBAT vs 11 MPa for neat PBAT) while a 1 wt% filler loading was adequate to double the tensile strength. The barrier properties (WVTR and oxygen transmission rate) of PBAT was improved by the presence of Cl-fn-POSS. A volume of 3 wt% filler loading results in 50% reduction of water permeation and 10% reduction in oxygen transmission. The thermogravimetric analyses of the nanocomposites indicated that the filler enabled the enhancement of thermal stability of PBAT. The nanocomposite films revealed antimicrobial activity with this activity increasing with increasing filler content. PBAT is compostable under suitable conditions and with a low weight percentage of filler that is largely made of silicon dioxide these nanocomposite films can find application as biodegradable food packaging material given their flexibility.  相似文献   

17.
Starch-based biodegradable films were prepared by using solution-casting method and reinforced by agricultural residues [apricot and walnut shell (APS and WNS) powder]. The powder of both shells was added in different ratios (0, 2.5, 5, 7.5, and 10%) to investigate the microstructures and performances (mechanical and thermal properties) of the starch-based film. Different techniques such as impact, tensile testing, scanning electron microscope, optical microscope (OM), X-ray diffraction (XRD), water vapor transmission rate (WVTR), and dynamic mechanical analysis were applied to study the thermomechanical and barrier properties of the composite films. Results showed that the incorporation of both shells significantly improved the WVTR and mechanical properties of starch-based films. The shells powder was significantly increased the Young's modulus and tensile strength of the starch-based films. Both OM and SEM results showed reasonably good compatibility between starch and reinforced shells. OM and XRD indicated that the APS and WNS not only retained their crystalline structure in the film but they also strengthened the peak intensity of the film. This phenomenon can be used to explain the mechanism of mechanical reinforcement. Since all the components used in the preparation of the films are food grade ingredients, it is expected that the films developed in this work will be used for food packaging applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47978.  相似文献   

18.
A novel gel polymer electrolyte (GPE) which is based on new synthesized boron‐containing monomer, benzyl methacrylate, 1 m LiClO4/N,N‐dimethylformamidel liquid electrolyte solution is prepared through a one‐step synthesis method. The boron‐containing GPE (B‐GPE) not only displays excellent mechanical behavior, favorable thermal stability, but also exhibits an outstanding ionic conductivity of 2.33 mS cm?1 at room temperature owing to the presence of anion‐trapping boron sites. The lithium ion transference in this gel polymer film at ambient temperature is 0.60. Furthermore, the symmetrical supercapacitor which is fabricated with B‐GPE as electrolyte and reduced graphene oxide as electrode demonstrates a broad potential window of 2.3 V. The specific capacitance of symmetrical B‐GPE supercapacitors retains 90% after 3000 charge–discharge cycles at current density of 1 A g?1.  相似文献   

19.
This study aims to prepare and examine the properties of poly(vinyl alcohol)/casein (PVA/CAS) based films reinforced with cellulose nanocrystals (NC), which can be presented as an alternative to petroleum-based polymer packaging materials. PVA/CAS and 0.5–1–3–5 wt% NC containing PVA/CAS biocomposite films were prepared by solution casting method. Afterward, the 1NC film, which exhibited the best mechanical properties, was crosslinked with various amounts of glyoxal. Structural, morphological (polarized optical microscope), mechanical (tensile), thermal (differential scanning calorimetry, thermogravimetric analysis), contact angle, and water vapor transmission rate (WVTR) properties of the samples were investigated. The 1NC film exhibited the highest tensile strength (TS) and elongation values in PVA/CAS/NC films, and its mechanical properties decreased due to agglomeration with increasing NC amount. As expected, crosslinking improved the TS. The thermal stability of the PVA/CAS film was generally improved with the addition of NC and crosslinking. The high WVTR value of the PVA/CAS film decreased with the addition of NC and the 1NC film presented the lowest value. Thanks to the complex structure formed as a result of crosslinking and the reduced free volume, the WVTR of the 1NC film has reduced. The results showed that PVA/CAS-based films with good mechanical properties and water vapor barrier are promising as packaging materials.  相似文献   

20.
In this study, we synthesized novel films based on bacterial cellulose (BC), BC modified by polypyrrole (PPy), and a PPy–zinc oxide nanocomposite (BC–PPy–ZnO). The soft polymerization method at room temperature was used to obtain the BC–PPy and BC–PPy–ZnO films. The Combined D‐Optimal design was used to study the effects of the pyrrole monomer concentration, ZnO concentration, and polymerization time on the morphological, physical, color, and electrical conductivity properties of the films. Fourier transform infrared results reflected that some new interactions occurred between BC and PPy and PPy–ZnO. The X‐ray diffraction analysis showed that the crystalline behavior of the BC fiber was hindered because of the complete coating with the amorphous PPy particles. Scanning electron microscopy results show that the ZnO, PPy, and PPy–ZnO nanoparticles were placed between the BC fibers. PPy decreased the water vapor permittivity and total soluble matter percentage. Electrical conductivity studies of the synthesized BC–PPy–ZnO film showed that the film's electrical resistance was changed in different oxidation–reduction or volatile compounds media, so the results suggest that the BC–PPy–ZnO films could be used in antioxidative food active packaging and smart packaging. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46617.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号