首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effective dissolution of cellulosic macromolecules is the first predominant step to prepare functional bio‐based materials with desirable properties. In this study, we developed an improved dissolution process using a freeze‐drying pretreatment to promote the dissolution of cellulose. Rheological measurements of cellulose solutions and physicochemical characterization of regenerated cellulose films (scanning electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, and thermogravimetric analysis) were performed. Cellulose solution prepared from 5% microcrystalline cellulose (w:v) in the solvent exhibits a Newtonian fluid character while cellulose solutions at higher concentrations show a pseudo‐plastic fluid behavior. Results from physicochemical characterization indicate that a freeze‐drying pretreatment step of cellulose leads to a complete dissolution at 5% concentration while only part of cellulose is dissolved at 10% and 15% concentrations. The results obtained indicated that the use of a freeze‐drying pretreatment step under mild conditions lead to a complete dissolution of cellulose at 5% concentration. The cellulose films prepared from 5% concentration exhibited desirable properties such as good optical transparency, crystallinity, and thermal stability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44871.  相似文献   

2.
The feasibility of liquefying grape seeds (GS) in the blended solvents of PEG 400 and glycerol for the production of biopolyol was investigated. Different liquefaction conditions have great influences on the residue ratio of GS. The influences of the liquefaction condition such as temperature, time, catalyst percentage, and liquid–solid ratio on the residue ratio were discussed. The optimal conditions obtained were 180 °C, 120 min, catalyst percentage (percentage of solvent mass) of 3.5%, and liquid–solid ratio of 4. The FTIR showed that the lignin, cellulose, and hemicellulose in the GS were effectively decomposed in the liquefaction process. The characteristic parameters of the biopolyol were as follows: hydroxyl number of 397.46 mg KOH/g, acid number of 1.85 mg KOH/g, viscosity of 2960 mPa·s, weight‐average molecular weight of 5.18 × 103 g mol−1, and polydispersity of 3.64. These results suggest that the GS‐based polyol was suitable for the production of polyurethane foams. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43835.  相似文献   

3.
This article focuses on controlling the morphology of regenerated cellulose aerogel (RCA) and its application as a template for the preparation of functional cellulose nanoparticles (FCNPs). RCA is prepared by lyophilizing cellulose hydrogel which is fabricated through a sol–gel method in sodium hydroxide (NaOH)/urea aqueous solution. The morphology of RCA is adjusted by varying the gelation temperature and time. With the gelation temperature and time increasing, lamellar RCA transforms into strings of cellulose nanoparticles. Subsequently, RCA with the morphology of "strings of nanoparticles" is modified through the bulk condensation of l -lactic acid and RCA. Eventually, the prepared functionalized RCA (FRCA) is dispersed in an organic solvent to obtain purified FCNPs. The results demonstrate that single FCNP can be obtained by dispersing FRCA in dimethyl sulfoxide. Moreover, the prepared FCNPs have uniform size, good thermal-stability, and increasing hydrophobicity, which are ideal candidates for polymer composites in terms of fillers.  相似文献   

4.
Nanocrystalline cellulose (NCC) has great potential in applications in medical and food packaging due to its abundance, high specific surface area, biodegradability, biocompatibility, and reproducibility. N-Halamine is one of the most effective antibacterial agents, with broad-spectrum efficacy against microorganisms, good stability, and reproducibility. Due to the nanosize effect and high specific surface area of NCC, N-halamine-modified NCC is potentially an excellent biocidal compound. In this paper, an N-halamine precursor 1-hydroxymethyl-5,5-dimethylhydantoin (HDH) was used to modify NCC with cyanuric chloride (cych) as the bonding agent. After chlorination, the produced NCC-cych-HDH-Cl became antibacterial. The synthesized NCC-cych-HDH-Cl was added to a chitosan (CS) and polyvinyl alcohol (PVA) solution to prepare antibacterial films. The optimum mixing ratio of PVA and CS in the PVA/CS films and concentration of NCC-cych-HDH-Cl were investigated. The surface morphologies and mechanical properties of the antibacterial films were characterized with scanning electron microscopy, transmission electron microscopy, and mechanical strength tests. The results indicated that the film with 90/10 PVA/CS and 7.0% loading of NCC-cych-HDH-Cl exhibited excellent tensile strength. The antibacterial film with 5.91 × 1017 atoms/cm2 of active chlorine displayed an excellent antibacterial property against Staphylococcus aureus (ATCC 6538) and Escherichia coli O157:H7 (ATCC 43895). © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47101.  相似文献   

5.
In this work, regenerated cellulose (RC) tubes with the porous structure were successfully fabricated for constructing the non-invasive detection platform of vascular microenvironment. Polyethylene oxide (PEO) as a porogen was applied to induce porous structure of cellulose tubes. Tensile and burst pressure tests were carried out to evaluate the effects of PEO molecular weight and amount on the mechanical properties of cellulose tubes. The results showed that tensile strength of RC tubes was increased with increasing PEO molecular weight. The compliance of cellulose tubes decreased with increasing the PEO content. When 120 kDa PEO was applied, the average tensile strength of RC tubes could reach 1.27 MPa. The maximum burst pressure and compliance of RC tubes could reach 488.25 ± 35 mmHg and 7.50 ± 3.7%/100 mmHg, respectively. Human umbilical vein endothelia cells (HUVECs) exhibited obvious proliferation on cellulose tubes, and the collagen coating further improve the biocompatibility. The incorporated collagen further improved adhesion of the cells and growth on cellulose tubes. This work provided a kind of cellulose-based tube material with potential application for the construction of the vitro vascular microenvironment.  相似文献   

6.
A transparent, bendable, high oxygen barrier cellulose-based film was prepared, which has far better oxygen barrier properties than conventional polyethylene, polypropylene and cellophane materials. A series of regenerated cellulose films (RCs) were prepared from filter paper lacking oxygen barrier properties under different cellulose concentrations and gelation times. It was shown that the cellulose concentration and gel time had a greater effect on the oxygen barrier properties of RCs. When the cellulose concentration was 4 wt% and the gel time was 3 h, the RCs obtained the lowest oxygen permeability coefficient (OPC) down to 2.21 × 10−17 cm3 cm cm−2 s−1 Pa−1. The films have a tensile strength of 109.5 MPa, an elongation at break of 27.3% and a light transmission rate of 89%. In further, molecular dynamics simulations showed that when the filter paper was converted to RCs, the increase in hydrogen bonding and the decrease in free volume between cellulose chains caused a decrease in the diffusion coefficient of oxygen. As a novel biobased high oxygen barrier material, the film has broad application prospect in packaging and chemical industry.  相似文献   

7.
The impact strength of cellulose diacetate (CDA) bonded with a modified cardanol (3‐pentadecylphenoxy acetic acid: PAA) was greatly improved up to 9 kJ/m2 by adding a relatively small amount of modified silicones while suppressing a decrease in bending strength. In our recent research, this thermoplastic resin (PAA‐bonded CDA) exhibited high rigidity, glass transition temperature, and water resistance. However, its impact strength was insufficient for use in durable products. Therefore, silicones modified with polyether, amino, and epoxy groups were investigated as possible ways to improve the impact strength. The results show that adding polyether‐modified silicone (polyether silicone) with moderate polarity relative to PAA‐bonded CDA resulted in shearing deformation greatly enhances its impact strength while maintaining other properties, including glass transition temperature (Tg), water resistance, and thermoplasticity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40366.  相似文献   

8.
Bio-based materials with multifunctional performance are getting immense attention nowadays for their environment friendly and renewable character. Inspired by toughening effect of graphene nanosheets and borate chemistry, a simple in-situ borate crosslinking in water and freeze-drying method was employed to fabricate a fire retarded bio-based aerogel. The structure of the material was evaluated and analysis by SEM, XRD, FTIR, Raman and XPS. Importantly, the bio-based aerogel has improved strength and adsorption properties due to unique structure. The compressive strength of rGO(reduced graphene oxide) + CMC (carboxymethyl cellulose) aerogel could reach 128 ± 2.1 kPa which is five times that of neat CMC aerogel. The bio-based aerogel can load more than 2500 times of self-weight. The adsorption capacity for organic solvents and oil of rGO+CMC aerogel is also greatly improved by a little rGO (1%) introducing due to its unique porous structure and hydrophobic nature of rGO. Additionally, rGO+CMC aerogel is also found fire resistant with relatively low thermal conductivity due to the borate and GO introduction.  相似文献   

9.
Nanocellulose as reinforcing filler added into resin matrix has been widely used in many studies, but it remains challenging when some rigorous applications are taken into consideration. In this study, a novel nanocomposite with high performance was successfully developed for stereolithography (SLA) through physical (cellulose nanocrystal [CNC] physical enhancement) and chemical (esterification reaction) double enhancement effects during post-curing process. Compound additive (CA), composed of CNCs, butanetetracarboxylic acid, and sodium hypophosphite, were added into methacrylic acid resin to form a novel nanocomposite for SLA and post-curing. Mechanical properties of samples added with CA were better than those added with CNC only. When the content of CNC in the CA was 0.5 wt%, the sample possessed optimal mechanical properties and improved thermal stability after post-curing. Meanwhile, dynamic mechanical analysis showed that samples added with CA improved storage modulus and meaningfully increased toughness when used at near room temperature.  相似文献   

10.
This work analyzes the differences in the final properties of two waterborne polyurethanes (WBPU) prepared with two macrodiols of different chemical structure, but similar molecular weight, as well as the variations caused by incorporating low percentages of microfibrillated cellulose nanocrystals. One of the polyurethanes was based on a synthetic but biodegradable precursor (polycaprolactone diol, PCL) and a second one based on a bio‐based macrodiol derived from castor oil (CO1). The bio‐based material presented higher mechanical properties at room temperature than the synthetic one, with the Young's modulus (MPa) ranging from 2.23 ± 0.09 to 84.88 ± 0.96 for the PCL and bio‐based WBPUs, respectively. Additionally, the PCL‐based WBPU showed to be more sensitive to the incorporation of cellulose than the bio‐based WBPU, and it also suffered changes during time due to delayed crystallization. The behavior of the two systems were compared and related to the different structure of the macrodiols that led to different interfacial interactions. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44207.  相似文献   

11.
This research evaluates the effects of filler content and silanization on thermal, morphological and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH)-based composites. Microfibrillated cellulose (MFC) was obtained by a mechanical treatment of high-pressure homogenization, starting from oat hull fiber, a byproduct of the agri-food sector. MFC reinforced PHBH composites were prepared by melt compounding. SEM and FT-IR analysis showed a good dispersion of the filler in the polymeric matrix, denoting the effectiveness of the surface silanization process. The thermal stability of PHBH composites remains substantially unchanged, and the glass transition temperature marginally increases with the increase of the filler content. Furthermore, silanized MFC shows slightly reinforcing mechanical effects on PHBH composites, such as the increase of 10% of the Young modulus with an increase of the maximum tensile stress as well. This finding has an economical interest since the results showed that MFC, deriving from a byproduct, can be successfully used as filler, decreasing the cost of the bio-based compound leaving substantially unaltered its mechanical and thermal properties. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48953.  相似文献   

12.
Artificial wood films containing cellulose, xylan, and lignin were easily prepared by the dissolution of wood components in 1‐ethyl‐3‐methylimidazolium acetate followed by reconstitution with distilled water. The composition and characteristics of wood films were highly controllable and predictable through the variation of the concentration of each component in the wood solution. The water vapor solubility of the wood films was increased when the xylan content was increased and the content of lignin was decreased. The biodegradability of the artificial wood films was investigated with cellulase from Trichoderma viride. The relative degradability of the wood film prepared with 5% cellulose and 5% lignin was 42%, whereas that of the wood film made with 5% cellulose and 5% xylan was 189%. The biodegradability of cellulose in the wood films correlated well with the content of xylan and lignin, and it was enhanced when the xylan content was increased and the content of lignin was decreased. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42109.  相似文献   

13.
Cellulose nanocrystals (CNCs) prepared via sulfuric acid hydrolysis are decorated with sulfate groups that yield a stable water suspension. To make the CNCs adaptable for use in composites, the hydroxyl groups on the surface are usually hydrophobized. In this article, an alternative hydrophobization method is described in which the sulfate groups are conjugated with azetidinium salts. The results of this study show that the sulfate groups can be functionalized with azetidinium salts and from thermal studies, it was discovered that the functionalization led to a 100 °C increase in thermal stability, compared with unmodified CNCs. The nanocomposites prepared by extrusion of CNC‐coated low‐density polyethylene powder displayed similar mechanical properties as the CNC‐reference sample, but without the discoloration, due to the increased thermal stability. In conclusion, the azetidinium reagent reacts preferentially with sulfate groups, and this new type of chemical conversion of sulfate groups on polysaccharides will be beneficial in nanocomposite manufacturing. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45963.  相似文献   

14.
In this study, ethylene‐vinyl alcohol copolymer (EVOH) nanocomposites were prepared by melt compounding both plant cellulose nanowhiskers (CNW) and bacterial cellulose nanowhiskers (BCNW) as nanofillers. Electrospinning and a “dissolution precipitation” method were used as strategies for the incorporation of CNW in EVOH before melt compounding with the aim of enhancing the degree of dispersion of the nanocrystals when compared with direct melt‐mixing of the freeze‐dried product with the polymer. As revealed by morphological characterization, the proposed preincorporation methods led to a significant improvement in the dispersion of the nanofiller in the final nanocomposite films. Furthermore, it was possible to incorporate concentrations as high as 4 wt % BCNW without causing significant agglomeration of the nanofiller, whereas increasing the CNW concentration up to 3 wt % induced agglomeration. Finally, DSC studies indicated that the crystalline content was significantly reduced when the incorporation method led to a poor dispersion of the nanocrystals, whereas high‐nanofiller dispersion resulted in thermal properties similar to those of the neat EVOH. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Recycling waste paper can be considered as a means to displace the use of natural cellulose fibers applied in building materials, because it is composed mostly of cellulose. The water absorption and special surface area of cellulose fibers are the key properties for their use in building materials. The objective of this article was to study the production of recycled cellulose fibers from waste paper using ultrasonic wave processing. The physical and chemical properties of recycled cellulose fibers, such as water absorption, specific surface area and pore characteristics, etc., were investigated with various testing methods. The results indicated that the ultrasonic cavitation effect was feasible for the preparation of the secondary fibers. When the ultrasonic treatment time lasted for 10 min, the water absorptions of both newsprint fibers and kraft fibers increased significantly and reached the highest values of 12.5 g/g and 11.2 g/g, respectively, which were nearly two times than that of fibers without ultrasonic treatment. With a pretreatment of 20 min, the average length and fineness of recycled cellulose fibers decreased by 4% and 25%, respectively, and the length‐diameter ratio of the recycled cellulose fibers was 1.28 times than that of the untreated fibers, which greatly increased the special surface area of the recycled cellulose fibers. This work also determined that NaOH was useful to improve the physical properties of the recycled cellulose fibers. Because the recycled cellulose fibers after processing, fulfilled several technical indexes, they can be considered as a filling material for used in cement‐based materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41962.  相似文献   

16.
Building blocks made from renewable sources attract increasing attention for the design of new polymer systems. Recently, in this particular context, cellulose nanocrystals (CNCs) have gained great interest in both academic research and industry, mainly on account of their ability to reinforce range of polymer matrices and afford nanocomposites with attractive mechanical properties. The limited thermal stability of conventionally produced cellulose nanocrystals (CNCs) has, however, so far limited the range of polymers that could be used as basis for melt‐processed CNC nanocomposites. We herein show that a commercially accessible nanocrystal source, a particular grade of microcrystalline cellulose (MCC), can easily be converted into thermally stable CNCs by ultrasonication in phosphoric acid. A scalable melt‐mixing process was used to produce nanocomposites of these CNCs with a thermoplastic polyurethane (TPU) elastomer. A significant improvement of the room temperature storage modulus from 40 MPa (neat polymer) to 120 MPa (10% w/w CNC) was observed. The introduction of CNCs not only increased the stiffness of the polymer matrix, but also improved the shape memory properties of the nanocomposite. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45033.  相似文献   

17.
In the present work, the crystallinity and crystalline morphology, thermal stability, water barrier, and mechanical properties of ethylene vinyl alcohol copolymer (EVOH) nanocomposites prepared by melt compounding and incorporating both plant (CNW) and bacterial cellulose nanowhiskers (BCNW) are reported. An improvement in the water barrier performance was observed, that is, 67% permeability drop, only for the microcomposite sample incorporating 2 wt % of bacterial cellulose fibrils. No significant differences in the water‐barrier properties of the nanocomposites generated through the two studied preincorporation methods were observed despite the fact that an excellent dispersion was observed in the previous study. On the other hand, direct melt‐mixing of the freeze‐dried nanofiller with EVOH resulted in increased water permeation. The aggregation of the filler in the latter nanocomposite was also ascribed to the detrimental effect on the mechanical properties. Interestingly, by using the precipitation method, an increase in the elastic modulus and tensile strength of ~36 and 22%, respectively, was observed for a 3 wt % BCNW loading, which was thought to coincide with the percolation threshold. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Ionic liquid (IL)‐water mixtures were applied in cellulose pretreatment experiment and the pretreated cellulose was used in subsequent phenol liquefaction process as a new application method. Cellulose recovery rate and the average molecular weight (Mw) of pretreated cellulose were investigated to understand the influence of these mixtures on cellulose structure. X‐ray diffraction, Fourier transform infrared, gel permeation chromatograph, and scanning electron microscope were used to clarify the changes of pretreated cellulose. The liquefied residues from untreated cellulose and pretreated cellulose were considered as significant index to determine the effect of IL‐water mixtures on cellulose. Moreover, liquefied residues were initially characterized by the variation of the average Mw. It was suggested that the lower Mw of cellulose obtained in IL‐water mixtures, and the crystalline structure was disrupted. So, some cracks were found on the cellulose surface obviously. The liquefied residues result suggested that the pretreated cellulose obtained the lower residues at the same time or the same amount of residues by using the less time. The behavior of cellulose liquefaction efficiency using IL‐water mixture pretreatment was discussed. The lower Mw of cellulose was the major factor, which accelerates the cellulose phenol liquefaction process efficiency. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40255.  相似文献   

19.
The surface modification of wet‐milled softwood lignin produced with the LignoForce System was successfully carried out in a one‐step aqueous process. Different hydrophobic molecules, including cetyl trimethyl ammonium bromide, poly(ethylene oxide), polyethylene‐block‐poly(ethylene glycol), dodecenyl succinic anhydride, and alkyl ketene dimer (AKD), were investigated to design the hydrophobicity of lignin with the objective of improving the adhesion and compatibility in polymer blends composed of polar lignin particles and, for example, nonpolar polypropylene (PP). AKD, among all of the investigated approaches, proved to be the simplest and most effective for significantly increasing the contact angle of lignin while preserving the original micrometer size of wet‐milled, spray‐dried lignin particles. This treatment led to a noticeable improvement in the stiffness of lignin–PP composite blends, with an increase of approximately 15% in Young's modulus. The compatibility of the AKD‐treated lignin with PP was assessed through tensile strength measurements and blend morphology observation, whereas the mechanism of AKD interaction with lignin was investigated with contact angle measurement, differential scanning calorimetry, Fourier transform infrared spectroscopy, and 1H‐NMR spectroscopy measurements. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45103.  相似文献   

20.
Samples of starch?gelatin polymer reinforced with 5% of recycled cellulose were prepared using an extrusion‐compression molding process. Nanoindentation and atomic force acoustic microscopy (AFAM) techniques were used to study the effect of reinforcement at nanoscale level. Nanoindentation tests show a 163% increase in hardness and 123% of elastic modulus enhancement after recycled cellulose inclusion. AFAM shows that distribution of recycled cellulose into the polymer matrix is rather homogeneous at nanoscale which improves load transfer. Thermogravimetric analysis indicates an increase in thermal stability of the cellulose reinforced polymer matrix samples. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41787.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号