首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and properties of soluble, high Tg and transparent aromatic polyimides containing 4,5‐diazafluorene and trifluoromethyl units in the polymer backbone on the basis of a novel diamine monomer, 9,9‐di[4‐(4‐amino‐2‐trifluoromethyl phenoxy)phenylene]‐4,5‐diazafluorene, are described. Incorporation of 4,5‐diazafluorene and trifluoromethyl groups into rigid polyimides improves their solubility and transparency without decreasing their physical properties. All of the thermal imidization polyimides are soluble at room temperature in aprotic and protic polar solvents such as N,N‐dimethylacetamide, N,N′‐dimethylformamide, dimethylsulfoxide, pyridine and m‐cresol and can be solution cast into transparent, flexible and tough films. These films have a UV–visible absorption cutoff wavelength at 386–407 nm and light transparencies of 73%–84% at a wavelength of 550 nm. In addition, the polymers exhibit high thermal stability with a glass transition temperature (Tg) of 305 to 362 °C and 5% weight loss at temperatures ranging from 525 to 543 °C in nitrogen and from 521 to 538 °C in air. The polyimide films possess tensile strengths in the range 79 ? 113 MPa, a tensile modulus of 1.75 – 2.10 GPa and elongations at break of 7% ? 16%. © 2014 Society of Chemical Industry  相似文献   

2.
A series of novel homo‐ and copolyimides containing pyridine units were prepared from the heteroaromatic diamines, 2,5‐bis (4‐aminophenyl) pyridine and 2‐(4‐aminophenyl)‐5‐aminopyridine, with pyromelltic dianhydride (PMDA), and 3,3′, 4,4′‐biphenyl tertracarboxylic dianhydride (BPDA) via a conventional two‐step thermal imidizaton method. The poly(amic acid) precursors have inherent viscosities of 1.60–9.64 dL/g (c = 0.5 g/dL in DMAC, 30°C) and all of them can be cast and thermally converted into flexible and tough polyimide films. All of the polyimides show excellent thermal stability and mechanical properties. The polyimides have 10% weight loss temperature in the range of 548–598°C in air. The glass transition temperatures of the PMDA‐based samples are in the range of 395–438°C, while the BPDA‐based polyimides show two glass transition temperatures (Tg1 and Tg2), ranging from 268 to 353°C and from 395 to 418°C, respectively. The flexible films possess tensile modulus in the range of 3.42–6.39 GPa, strength in the range of 112–363 MPa and an elongation at break in the range of 1.2–69%. The strong reflection peaks in the wide‐angle X‐ray diffraction patterns indicate that the polyimides have a high packing density and crystallinity. The polymer films are insoluble in common organic solvents exhibiting high chemical resistance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1844–1851, 2006  相似文献   

3.
We have developed a sequence‐dependent synthesis of the amino‐functionalized poly(ether sulfone) P2 . The amino groups of P2 act as reactive sites toward epoxy resins. After curing P2 with diglycidyl ether of bisphenol A (DGEBA) and cresol novolac epoxy (CNE), we obtained the flexible, light‐yellow, transparent, epoxy thermosetting films P2 /DGEBA, and P2 /CNE, respectively, having glass transition temperatures (Tg) of 258 and 274°C, respectively. In addition, we also prepared a flexible film after condensation of the amino groups of P2 with the anhydride groups of 4,4′‐oxydiphthalic anhydride (ODPA); after imidization at 300°C for 1 h, the resulting P2 /ODPA thermosetting film possessed a value of Tg of 340°C. These three thermosetting films also exhibited flame retardancy with a UL‐94 VTM‐0 grade. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40980.  相似文献   

4.
In order to better understand the design rules of epoxy–phenol thermosets we will report on the chemistry and (thermo)mechanical properties of cured epoxy–phenol thermoset films. Ortho-, meta- and para-isomers of dihydroxybenzene (DHB) were reacted with the diglycidyl ether of bisphenol A (DGEBA) in the presence of an acid catalyst or triphenylphosphine (PPh3). The glass transition temperatures (Tg) of the cross-linked films decreases in the order of meta- (Tg = 115°C) > ortho- (Tg = 102°C) > para-DHB (Tg = 96°C) as measured by differential scanning calorimetry. Uniaxial tensile testing of cross-linked films showed excellent stress–strain behavior. The average ultimate strength values ranged from 65 to 82 MPa and the average values of the strain-at-break ranged from 4.8% to 6.9% at 25°C for all cross-linked films. When a PPh3 was used, the network properties were profoundly different. The base catalyzed thermoset of DGEBA and meta-DHB shows a Tg of 85°C, which is 30°C lower than the Tg of the acid-catalyzed analog. Tensile films appear to be more ductile, as they exhibit a strain-at-break of 20%. The results of this study confirm that simple dihydroxybenzene hardeners can be used to prepare cross-linked films with excellent thermomechanical properties.  相似文献   

5.
Triblock copolymer (TCP)‐based thermoplastic elastomers (TPEs) were designed via reversible addition–fragmentation chain‐transfer emulsion polymerization. Short isobornyl methacrylate (IM) building blocks in the two ends of molecular chain were incorporated to guarantee the mechanical properties of the TPEs at high temperature (i.e., heat resistance) because of the high glass‐transition temperature (Tg) of poly(isobornyl methacrylate) (PIM; ~180 °C). The microphase separation, tensile properties at different temperatures, dynamic mechanical properties, oil resistance, and thermal stability of the TPEs were extensively characterized. The TPEs had distinct microphase separation with a wide inter‐Tg interval (150–185 °C). The tensile strength and elongation at break of the TPEs decreased with increasing temperature from 25 to 100 °C because of the reduced interactions in the phase domain. Even so, the TPEs had a high elongation at break beyond 200% and little change in the tensile strength even at 100 °C together with a wide quasi‐platform stage between the Tg values in dynamic mechanical analysis; this indicated good heat resistance. Meanwhile, the TPEs had an enhanced oil resistance and a thermal stability higher than 300 °C. These TCP‐based TPEs with heat and oil resistance broaden the application potential in practical fields. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45379.  相似文献   

6.
A new kind of aromatic unsymmetrical diamine monomer containing thiazole ring, 2‐amino‐5‐(4‐aminophenyl)‐thiazole (AAPT), was synthesized. A series of novel polyimides were prepared by polycondensation of AAPT with various aromatic dianhydrides by one‐step polyimidation process. The synthesized polyimides had inherent viscosity values of 0.36–0.69 dL/g and were easily dissolved in highly dipolar solvents. Meanwhile, strong and flexible polyimide films were obtained, which have good thermal and thermo‐oxidative stability with the glass transition temperatures (Tg) of 276.7–346.1°C, the temperature at 5% weight loss of 451–492°C in nitrogen and 422–440°C in air, as well as have outstanding mechanical properties with the tensile strengths of 94–122 MPa, elongations at breakage of 5–18%. These films also had dielectric constants of 3.12–3.38 at 10 MHz. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
A series of block and random copolyimide films were synthesized from various molar ratios of two diamines, rigid 2‐(4‐aminophenyl)‐5‐aminobenzimidazole (APBI) and flexible 4,4′‐oxydianiline (ODA) by polycondensation with dianhydride 3,3′,4,4′‐biphenyltetracarboxylic dianhydride. The contents of APBI ranged from 10 to 60 mol % in copolyimides. The copolyimide films obtained by thermal imidization of poly(amic acid) solutions, were characterized by TMA, DMA, TGA, DSC, wide‐angle X‐ray diffraction, FTIR, tensile testing, water uptake (WU), and dielectric constant measurements. Rigid heterocyclic diamine APBI with interchain hydrogen bonding capability, led to low coefficient of thermal expansion (CTE), high Tg, high thermal stability and better mechanical properties. Increasing the APBI mol % caused a gradual decrease in the CTE and increase in Tg, thermal stability and tensile strength properties of the copolyimides films. Moreover, significantly enhanced thermal and mechanical properties of the block copolyimides were also found as compared to random copolyimides. The block copolyimide with APBI content of 60 mol %, achieved excellent properties, that is, a low CTE (4.7 ppm/K), a high Tg at 377°C, 5% weight loss at 562°C and a tensile strength at 198 MPa. This can be interpreted because of comparatively higher degree of molecular orientation in block copolyimides. These copolyimides also exhibited better dielectric constant and WU. This combination of properties makes them attractive candidates for base film materials in future microelectronics. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
Fully bio‐based soy protein isolate (SPI) resins were toughened using natural rubber (NR) and epoxidized natural rubber (ENR). Resin compositions containing up to 30 wt % NR or ENR were prepared and characterized for their physical, chemical and mechanical properties. Crosslinking between SPI and ENR was confirmed using 1H‐NMR and ATR‐FTIR. All SPI/NR resins exhibited two distinctive drops in their modulus at glass transition temperature (Tg ) and degradation temperature (Td ) at around ?50 and 215 °C, corresponding to major segmental motions of NR and SPI, respectively. SPI/ENR resins showed similar Tg and Td transitions at slightly higher temperatures. For SPI/ENR specimens the increase in ENR content from 0 to 30 wt % showed major increase in Tg from ?23 to 13 °C as a result of crosslinking between SPI and ENR. The increase in ENR content from 0 to 30 wt % increased the fracture toughness from 0.13 to 1.02 MPa with minimum loss of tensile properties. The results indicated that ENR was not only more effective in toughening SPI than NR but the tensile properties of SPI/ENR were also significantly higher than the corresponding compositions of SPI/NR. SPI/ENR green resin with higher toughness could be used as fully biodegradable thermoset resin in many applications including green composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44665.  相似文献   

9.
Three types of polypropylene‐grafted silica (PGS‐2 K, PGS‐8 K and PGS‐30 K) with different grafting chain lengths were prepared. After melt‐blending PGS with polypropylene (PP), we studied the PP/PGS interface properties and the influence of PP/PGS interfaces on mechanical properties of nanocomposites. The strong matrix/particle interface was observed in PP/PGS‐30 K nanocomposites with 5 wt % particle loading as evidenced by 2.5 °C increased glass transition temperature (Tg) compared with neat PP, whereas the weak matrix/particle interface was observed in PP/PGS‐2 K nanocomposites with decreased Tg. The variations in the matrix/particle interfacial strength lead to a transition in the yield stress of nanocomposites. Compared with the unfilled PP, the yield stress of the PP/PGS‐2 K nanocomposites is decreased by 0.7 MPa, and the yield stress of the PP/PGS‐30 K nanocomposites is enhanced by 1.4 MPa. In addition, benefiting from good dispersion, the PP/PGS‐masterbatch nanocomposites with a strong matrix/particle interface not only exhibit increased Young's modulus and yield stress, but also the strain at break remains in line with the unfilled PP, which is in contrast to the conventional wisdom that the gain in modulus and strength must be at the expense of the decreased break strain. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45887.  相似文献   

10.
Poly(ethylene terephthalate) (PET) chips were coated by trisilanolphenyl–polyhedral oligomeric silsesquioxane (T‐POSS) and hexakis (para‐allyloxyphenoxy) cyclotriphosphazene (PACP) using the predispersed solution method, and PET/PACP/T‐POSS hybrids were further prepared by the melt‐blending method. The influence of T‐POSS on the rheological, thermal, and mechanical properties and flame retardancy of PET/PACP composites were discussed. The results suggest that T‐POSS was homogeneously dispersed in the PET matrix, which reduced the negative effects on polymer rheology and mechanical properties. For the PET/4%PACP/1%T‐POSS sample, the tensile strength at break and Tg increased from 29.67 MPa and 81.7 °C (PET/5%PACP) to 34.8 MPa and 85.8 °C, respectively, but the sample also self‐extinguished within 2 s, and the heat release capacity was reduced by 27.9% in comparison with that of neat PET.© 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45912.  相似文献   

11.
Three novel polyimides (PIs) having pendent 4‐(quinolin‐8‐yloxy) aniline group were prepared by polycondensation of a new diamine with commercially available tetracarboxylic dianhydrides, such as pyromellitic dianhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, and bicyclo[2.2.2]‐oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride. These PIs were characterized by FTIR, 1H NMR, and elemental analysis; they had high yields with inherent viscosities in the range of 0.4–0.5 dl g−1, and exhibited excellent solubility in many organic solvents such as N,N‐dimethyl acetamide, N,N′‐dimethyl formamide, N‐methyl pyrrolidone (NMP), dimethyl sulfoxide, and pyridine. These PIs exhibited glass transition temperatures (Tg) between 250 and 325° C. Their initial decomposition temperatures (Ti) ranged between 270 and 450°C, and 10% weight loss temperature (T10) up to 500°C with 68% char yield at 600°C under nitrogen atmosphere. Transparent and hard polymer films were obtained via casting from their NMP solutions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
The change of the glass transition temperatures (Tg) in the blend of poly(L ‐lactic acid) (PLLA) and the copolymers of poly(D,L ‐lactic acid) and poly(glycolic acid) (PDLLA‐PGA) with different D,L ‐lactic acid and glycolic acid composition ratio (50 : 50, 65 : 35, and 75 : 25) was studied by DSC. Dynamic mechanical measurement and tensile testing were performed at various temperatures around Tg of the blend. In the blend of PLLA and PDLLA‐PGA50 (composition ratio of PDLLA and PGA 50 : 50), Tg decreased from that of PLLA (about 58°C) to that of PDLLA‐PGA50 (about 30°C). A single step decrease was observed in the DSC curve around Tg between the weight fraction of PLLA (W(PLLA)) 1.0 and 0.7 (about 52°C) but two‐step changes in the curve are observed between W(PLLA) = 0.6 and 0.3. The Tg change between that of PLLA and that of PDLLA‐PGA and the appearance of two Tgs suggest the existence of PLLA rich amorphous region and PDLLA‐PGA copolymer rich amorphous region in the blend. A single step decrease of E′ occurs at around Tg of the pure PLLA but the two‐step decrease was observed at W(PLLA) = 0.6 and 0.4, supporting the existence of the PLLA rich region and PDLLA‐PGA rich region. Tensile testing for various blends at elevated temperature showed that the extension without yielding occurred above Tg of the blend. Partial miscibility is suggested for PLLA and PDLLA‐PGA copolymer blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2164–2173, 2004  相似文献   

13.
A novel fluorinated diamine monomer with a keto group, 4‐[4‐amino‐2‐trifluoromethyl phenoxy]‐4′‐[4‐aminophenoxy]benzophenone (ATAB) was prepared by reacting dihydroxybenzophenone with 4‐chloronitrobenzene and 2‐chloro‐5‐nitrotrifluoromethylbenzene in the presence of potassium carbonate followed by catalytic reduction with palladized carbon (10%). Fluorinated polyimides IVa–e were synthesized from the diamine mentioned above via a two‐step method (thermal and chemical imidization). Polyimides IVa–e have inherent viscosities in the range 0.65–1.06 dL g?1 (thermal imidization) and 0.82–1.56 dL g?1 (chemical imidization). The polyimides prepared by chemical imidization exhibit excellent solubility. Polyimide films exhibit tensile strength, elongation and tensile modulus in the ranges 96–106 MPa, 9–13% and 1.1–1.7 GPa, respectively. The T10 values of the polyimides are in the range 540–598 °C in nitrogen and 545–586 °C in air, with more than 50–60% char yield. They have Tg values between 244 and 285 °C. The prepared polyimides show cut‐off wavelengths in the range 365–412 nm and transmittance at 450 nm in the range 80.9–94.2%. The dielectric constants of the polyimide films are in the range 3.10–3.77 at 1 kHz and 3.04–3.66 at 10 kHz, with moisture absorption of 0.14–0.40%. Copyright © 2006 Society of Chemical Industry  相似文献   

14.
A series of novel fluorine containing aromatic polyamides were synthesized by the direct polycondensation of various fluorine containing aromatic diamines and commercially available 5‐t‐butyl isophthalic acid. These polyamides have good solubility in several organic solvents such as dimethylformamide, N,N‐dimethylacetamide, 1‐Methyl‐2‐pyrrolidone, dimethyl sulfoxide, and tetrahydrofuran. The synthesized polymers exhibited inherent viscosities up to 0.93 dL/g and Mw up to 1,52,000 with PDI of 2.49. The polyamides exhibited good thermal stability up to 489°C for 10% weight loss in nitrogen and high glass transition temperature up to 273°C. Dynamic mechanical analysis showed a very good retention of storage modulus up to the glass transition temperature. The tan δ peak value at 1 Hz was used to calculate the Tg and these values are in good agreement with differential scanning calorimetry data. The polyamide films were flexible with tensile strength up to 72 MPa, elongations at break up to 14%, and modulus of elasticity up to 1.39 GPa depending on the exact repeating unit structure. X‐ray diffraction measurements indicate that these polyamides are semicrystalline. Rheology study showed same trend of melt viscosity behavior with different shear rate for all polymers. Water absorption study indicates the hydrophobic nature of the polymer. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
In this study, a new diamine N‐[2‐(1H‐indol‐3‐yl)ethyl]‐3,5‐diaminobenzamide (IEDAB) was synthesized using tryptamine as starting material and characterized by FT‐IR, 1H‐NMR, 13C‐NMR, and mass spectroscopy. Then, it was polymerized with 3,3',4,4'‐benzophenone tetracarboxylic dianhydride (BTDA) via thermal imidization to produce polyimide (PI). A series PI/GO nanocomposite films were prepared by incorporating different ratios (1, 3, and 5 wt%) of synthesized GO by solution casting method. The synthesized PI was confirmed by Ubbelohde viscometer and FT‐IR spectroscopy. SEM and Raman spectroscopy showed that GO was well dispersed in the PI matrix. XRD patterns indicated the PI and PI/GO nanocomposite films were highly amorphous in nature. The synthesized PI and their nanocomposites show high thermal stability as their T10% weight loss are in the range of 498 to 563°C with 30.6 to 40% of char yield and the glass transition temperatures (Tg s) are in the range of 188 to 262°C. The limited oxygen index (LOI) values increased from 31.4% to 56.0% with increases of 5% GO content in the PI/GO nanocomposite. They have high dielectric constant in the range of 2.6 to 5.1 at 1 MHz and also good mechanical properties with tensile strength of 81 to 116 MPa, elongation at break 5 to 9%. POLYM. ENG. SCI., 2017. © 2017 Society of Plastics Engineers  相似文献   

16.
Films of wholly aromatic copolyester composed of 4-hydroxybenzoic acid (HBA) and 2-hydroxy-6-naphthoic acid (HNA) were prepared by a solution-casting method using a mixed solution of pentafluorophenol (PFP) and chloroform (weight ratio: PFP/chloroform = 3/7). Using five samples with different copolymer compositions (HBA/HNA [mol%] = 25/75, 40/60, 55/45, 62/38, 73/27), the effects of the copolymer composition on the fine structures of the films were investigated using thermal analyses, density measurements, X-ray diffraction methods, and tensile tests. The as-cast films obtained were shown to be trans-parent and highly amorphous in spite of changing the copolymer composition. When the films were heated above the Tg (100°C), cold crystallization first occurred during the heating process and they had melting points. The densities of the films increased with increasing annealing temperature throughout the cold crystallization. The elongation percentages of the as-cast films reached high values of 30–74% at room temperature, indicating their maximum of elongation at 55 mol% of HBA. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
0.5BaZr0.2Ti0.8O3‐0.5Ba0.7Ca0.3TiO3 ceramic and its epitaxial films on (0 0 1) SrTiO3 substrate were prepared to compare their dielectric and ferroelectric properties. The ceramic has a high dielectric permittivity, a weak dielectric relaxation, a low ferroelectric Curie temperature (TC) of 60°C and a fast polarization relaxation. The films show much lower dielectric permittivities and mild dielectric relaxations. Furthermore, the TC of film with 40, 100, and 200 nm thickness is 155°C, 110°C, and 60°C, respectively, because the epitaxial strain decreases with the film thickness increasing. The higher the TC is, the more stable the room‐temperature polarization is.  相似文献   

18.
Bio‐based porous carbon/silica particles (denoted as RH‐carbon/silica) were successfully prepared from agricultural waste rice husk by using acid‐hydrothermal treatment and pyrolysis under nitrogen condition. As green filler, the cure behavior, thermal‐mechanical properties, and thermal conductivity of the epoxy‐carbon/silica biocomposites at different filler contents (5, 9, 17, 29 wt %) were characterized. Because of superior surface properties (surface area, porosity, and silica segment) and high content of carbon component in the RH‐carbon/silica, the characteristics of the biocomposites were significantly improved with the increase of the filler content. At 29 wt % of filler content, the epoxy biocomposites exhibit lower curing temperature (148 °C), lower CTE (42 ppm/°C), higher Tg (123 °C), higher storage modulus (4059 MPa), and higher effective thermal conductivity (0.29 W/mK). In brief, the RH‐carbon/silica particles that can serve not only as reinforcing agent but also as thermal transport medium used in epoxy composite, is a green and high‐performance filler for this purpose. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44699.  相似文献   

19.
In this work, a series of fluorine‐functionalized polysulfone (F‐PSU) copolymers with intrinsic low dielectric constants (low ε) are reported, which are derived from the polycondensation reaction of 4,4′‐dichlorophenyl sulfone with bisphenol A and bisphenol F (BPF) compounds. The resulting F‐PSU copolymers show high glass transition temperatures (Tg) varying from 187 to 201 °C and are thermally stable up to 500 °C under an N2 atmosphere. The introduction of BPF units into the PSU copolymers imparts enhanced hydrophobic properties to the F‐PSU films with increased water contact angle values from 66.2° to 93.7°. Moreover, the dielectric constant and dielectric loss of the F‐PSU (sample V) film are as low as 2.2 and 0.003 at 1 kHz, respectively. Interestingly, the dielectric properties are relatively stable to near the glass transition temperature, which is because of the existence of BPF structures in the molecular backbone. Furthermore, the F‐PSU copolymers are soluble in common solvents and can be readily fabricated into flexible transparent films by the spin casting method. © 2020 Society of Chemical Industry  相似文献   

20.
A series of copolymers and glass fiber composites were successfully prepared from 2,2‐bis [4‐(3,4‐dicyanophenoxy) phenyl] propane (BAPh), epoxy resins E‐44 (EP), and polyarylene ether nitriles (PEN) with 4,4′‐diaminodiphenyl sulfone as curing additive. The gelation time was shortened from 25 min to 4 min when PEN content was 0 wt % and 15 wt %, respectively. PEN could accelerate the crosslinking reaction between the phthalonitrile and epoxy. The initial decomposition temperatures (Ti) of BAPh/EP copolymers and glass fiber composites were all more than 350°C in nitrogen. The Tg of 15 wt % PEN glass fiber composites increased by 21.2°C compared with that of in comparison with BAPh/EP glass fiber composite. The flexural strength of the copolymers and glass fiber composites reached 119.8 MPa and 698.5 MPa which increased by 16.6 MPa and 127.3 MPa in comparison with BAPh/EP composite, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号