首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Miscanthus fibers reinforced biodegradable poly(butylene adipate‐co‐terephthalate) (PBAT) matrix‐based biocomposites were produced by melt processing. The performances of the produced PBAT/miscanthus composites were evaluated by means of mechanical, thermal, and morphological analysis. Compared to neat PBAT, the flexural strength, flexural modulus, storage modulus, and tensile modulus were increased after the addition of miscanthus fibers into the PBAT matrix. These improvements were attributed to the strong reinforcing effect of miscanthus fibers. The polarity difference between the PBAT matrix and the miscanthus fibers leads to weak interaction between the phases in the resulting composites. This weak interaction was evidenced in the impact strength and tensile strength of the uncompatibilized PBAT composites. Therefore, maleic anhydride (MAH)‐grafted PBAT was prepared as compatibilizer by melt free radical grafting reaction. The MAH grafting on the PBAT was confirmed by Fourier transform infrared spectroscopy. The interfacial bonding between the miscanthus fibers and PBAT was improved with the addition of 5 wt % of MAH‐grafted PBAT (MAH‐g‐PBAT) compatibilizer. The improved interaction between the PBAT and the miscanthus fiber was corroborated with mechanical and morphological properties. The compatibilized PBAT composite with 40 wt % miscanthus fibers exhibited an average heat deflection temperature of 81 °C, notched Izod impact strength of 184 J/m, tensile strength of 19.4 MPa, and flexural strength of 22 MPa. From the scanning electron microscopy analysis, better interaction between the components can be observed in the compatibilized composites, which contribute to enhanced mechanical properties. Overall, the addition of miscanthus fibers into a PBAT matrix showed a significant benefit in terms of economic competitiveness and functional performances. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45448.  相似文献   

2.
Biodegradable thermoplastic‐based composites reinforced with kenaf fibers were prepared and characterized. Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV), produced by bacterial fermentation, was selected as polymeric matrix. To improve PHBV/fibers adhesion, low amount of a proper compatibilizing agent, obtained by grafting maleic anhydride onto PHBV, was added during matrix/fibers melt mixing (reactive blending). When compared with uncompatibilized composites, the presence of the compatibilizer induces a stronger interfacial adhesion and a more pronounced improvement of the mechanical properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
Biodegradable polymer blends of poly(butylene succinate) (PBS) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) were prepared with different compositions. The mechanical properties of the blends were studied through tensile testing and dynamic mechanical thermal analysis. The dependence of the elastic modulus and strength data on the blend composition was modeled on the basis of the equivalent box model. The fitting parameters indicated complete immiscibility between PBS and PHBV and a moderate adhesion level between them. The immiscibility of the parent phases was also evidenced by scanning electron observation of the prepared blends. The thermal properties of the blends were studied through differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC results showed an enhancement of the crystallization behavior of PBS after it was blended with PHBV, whereas the thermal stability of PBS was reduced in the blends, as shown by the TGA thermograms. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42815.  相似文献   

4.
Nanocomposites based on poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) and multi‐walled carbon nanotubes (MWNTs) were prepared by solution processing. Ultrasonic energy was used to uniformly disperse MWNTs in solutions and to incorporate them into composites. Microscopic observation reveals that polymer‐coated MWNTs dispersed homogenously in the PHBV matrix. The thermal properties and the crystallization behavior of the composites were characterized by thermogravimetric analysis, differential scanning calorimetry and wide‐angle X‐ray diffraction, the nucleant effect of MWNTs on the crystallization of PHBV was confirmed, and carbon nanotubes were found to enhanced the thermal stability of PHBV in nitrogen. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
Poly(propylene carbonate) (PPC), a CO2‐based bioplastic and poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) were melt blended followed by injection molding. Fourier transform infrared spectroscopy detected an interaction between the macromolecules from the reduction in the OH peak and a shift in the C?O peak. The onset degradation temperature of the polymer blends was improved by 5% and 19% in comparison to PHBV and PPC, respectively. Blending PPC with PHBV reduced the melting and crystallization temperatures and crystallinity of the latter as observed through differential scanning calorimetry. The amorphous nature of PPC affected the thermal properties of PHBV by hindering the spherulitic growth and diluting the crystalline region. Scanning electron micrographs presented a uniform dispersion and morphology of the blends, which lead to balanced mechanical properties. Incorporating PHBV, a stiff semi‐crystalline polymer improved the dimensional stability of PPC by restricting the motion of its polymer chains. © 2016 The Authors Journal of Applied Polymer Science Published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44420.  相似文献   

6.
The Polylactide (PLA)/poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) blends with four different weight ratios were prepared by melt mixing. PLA and PHBV in PLA/PHBV blends were immiscible while the weak interaction between PLA and PHBV existed. The PHBV domains below 2 μm were dispersed in PLA matrix uniformly. The addition of PHBV made the crystallization of PLA easier due to PHBV acting as nucleating agent. PLA spherulites in PLA/PHBV blends presented various banded structures. In addition, the crystallinity of neat PLA was lower than those of PLA/PHBV blends. With the increase of PHBV content in PLA/PHBV blends, the crystallinity of PLA/PHBV blends increased. PHBV could enhance significantly the toughness of PLA. However, with the increase of PHBV content, the yield stress (σy), tensile modulus (E), and the yield strain (εy) of PLA/PHBV blends decreased gradually. In addition, incorporation of PHBV to PLA caused a transformation from an optical transparent to an opaque system. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42689.  相似文献   

7.
In this study, a nanocomposite based on a biodegradable polymer poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) reinforced by triethylene glycol mono‐n‐decyl ether (C10E3) non‐ionic organoclay (C10E3‐Mt) was prepared. The morphology and the thermal and mechanical properties of PHBV/C10E3‐Mt were compared with those of PHBV nanocomposites prepared using commercial organically modified montmorillonite Cloisite® 30B (OMt) and raw montmorillonite (Mt). Nanocomposites with 3 wt% nanoparticles were obtained by melt processing. The high level of dispersion with improved interfacial interactions between OMt and polymer led to an increase in the thermal stability and modulus of PHBV. However, this nanocomposite presented a lower strain before fracture, typical of brittle behavior. The transmission electron microscopy and wide angle X‐ray diffraction results revealed a significant increase in the interlayer spacing of clay for the PHBV/C10E3‐Mt nanocomposite, which was favored by the wide expansion of the platelets of the starting non‐ionic organoclay. This characteristic of C10E3‐Mt, together with its hydrophobic behavior, allowed its easy incorporation in the PHBV matrix, thus improving the processing and maintaining a high modulus with increased material toughness. © 2014 Society of Chemical Industry  相似文献   

8.
The aim of this study was to develop poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) bionanocomposites with natural vermiculite (VMT) and modified vermiculite (VMTO), by the melt intercalation technique and to evaluate the thermal behavior, biodegradation, and food–packaging interactions through X‐ray diffraction (XRD). Through XRD, we observed the structure of a microcomposite for the systems with natural clay and possibly an exfoliated structure for the systems with VMTO. We observed from the thermogravimetry and differential scanning calorimetry results that the natural systems showed a small increase in the thermal stability, whereas the organoclay systems had a lower thermal stability. A high biodegradability in the pure polymer and the natural bionanocomposites was evidenced by the Sturm test through the carbon dioxide production and high weight loss of the material. We observed that there was no significant migration of PHBV from the bionanocomposites to the simulants. Under these circumstances, the bionanocomposites with VMT presented better thermal stability and a high biodegradability and were possibly inert when in contact with food. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44700.  相似文献   

9.
Thermal properties of blends of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) and poly(styrene‐co‐acrylonitrile) (SAN) prepared by solution casting were investigated by differential scanning calorimetry. In the study of PHBV‐SAN blends by differential scanning calorimetry, glass transition temperature and melting point of PHBV in the PHBV‐SAN blends were almost unchanged compared with those of the pure PHBV. This result indicates that the blends of PHBV and SAN are immiscible. However, crystallization temperature of the PHBV in the blends decreased approximately 9–15°. From the results of the Avrami analysis of PHBV in the PHBV‐SAN blends, crystallization rate constant of PHBV in the PHBV‐SAN blends decreased compared with that of the pure PHBV. From the above results, it is suggested that the nucleation of PHBV in the blends is suppressed by the addition of SAN. From the measured crystallization half time and degree of supercooling, interfacial free energy for the formation of heterogeneous nuclei of PHBV in the PHBV‐SAN blends was calculated and found to be 2360 (mN/m)3 for the pure PHBV and 2920–3120 (mN/m)3 for the blends. The values of interfacial free energy indicate that heterogeneity of PHBV in the PHBV‐SAN blends is deactivated by the SAN. This result is consistent with the results of crystallization temperature and crystallization rate constant of PHBV in the PHBV‐SAN blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 673–679, 2000  相似文献   

10.
Polyhydroxyalkanoates are a class of biodegradable polymers that may be used more as environmentally friendly materials if their mechanical properties can be improved. We approached this goal by modifying poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) with a well‐established processing technique involving crosslinking the polymer chains and then drying a swollen gel of the network under uniaxial strain. The mechanical properties of the resulting oriented films were determined in continuous extension as a function of the degree of crosslinking and the extent of strain during the drying process. Crosslinking invariably improved the toughness. Similarly, the subsequent orientation of the process generally increased the toughness as well, but in some cases, a reduction in the extensibility offset the increase in the ultimate stress at break and yielded reduced values of the toughness. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1519–1523, 2005  相似文献   

11.
Poly(N‐vinylpyrrolidone) (PVP) groups were grafted onto poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) backbone to modify the properties of PHBV and synthesize a new novel biocompatible graft copolymer. The effect of graft modification with PVP on the thermal and mechanical properties of PHBV was investigated. The thermal stability of grafted PHBV was remarkably improved while the melting temperature (Tm) was almost not affected by graft modification. The isothermal crystallization behavior of samples was observed by polarized optical microscopy and the results showed that the spherulitic radial growth rates (G) of grafted PHBV at the same crystallization temperature (Tc) decreased with increasing graft yield (graft%) of samples. Analysis of isothermal crystallization kinetics showed that both the surface free energy (σe) and the work of chain‐folding per molecular fold (q) of grafted PHBV increased with increasing graft%, implying that the chains of grafted PHBV are less flexible than ungrafted PHBV. This conclusion was in agreement with the mechanical testing results. The Young's modulus of grafted PHBV increased while the elongation decreased with increasing graft%. The hydrophilicity of polymer films was also investigated by the water contact angle measurement and the results revealed that the hydrophilicity of grafted PHBV was enhanced. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
This study describes the microstructure and thermal and mechanical properties of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHB/HV)–organoclay nanocomposites prepared by melt intercalation using Cloisite 30B, a monotallow bis‐hydroxyethyl ammonium‐modified montmorillonite clay. X‐ray diffractometry and transmission electron microscopy analyses clearly confirm that an intercalated microstructure is formed and finely distributed in the PHB/HV copolymer matrix because PHB/HV has a strong hydrogen bond interaction with the hydroxyl group in the organic modifier of Cloisite 30B. The nanodispersed organoclay also acts a nucleating agent, increasing the temperature and rate of crystallization of PHB/HV; therefore, the thermal stability and tensile properties of the organoclay‐based nanocomposites are enhanced. These results confirm that the organoclay nanocomposite greatly improves the material properties of PHB/HV. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 525–529, 2003  相似文献   

13.
Residual lignocellulosic flour from spruce and ground olive stone was used as a natural filler in poly(hydroxybutyrate‐co‐valerate) (PHBV)‐based composites. The morphology and the thermal properties of these composites were investigated by scanning electron microscopy and differential scanning calorimetry, respectively. Lignocellulosic fillers acted as nucleating sites for the crystallization of PHBV and strongly enhanced its degree of crystallinity. Dynamic mechanical analysis and tensile properties of these materials were also studied. A significant reinforcing effect was displayed by dynamic mechanical analysis at temperatures higher than the glass–rubber transition of the matrix. In addition, for low‐particle‐size spruce, a stabilization of the modulus was observed up to 500 K. High‐strain tensile properties did not show any reinforcing effect. This apparent disagreement was explained by the poor adhesion between the hydrophilic lignocellulosic filler and the hydrophobic polymeric matrix. To validate this hypothesis, the experimental data were compared with predicted data involving the percolation concept. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1302–1315, 2003  相似文献   

14.
The effect of nucleating agents on the crystallization behavior of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) was studied. A differential scanning calorimeter was used to monitor the energy of the crystallization process from the melt and melting behavior. During the crystallization process from the melt, nucleating agent led to an increase in crystallization temperature (Tc) of PHBV compared with that for plain PHBV (without nucleating agent). The melting temperature of PHBV changed little with addition of nucleating agent. However, the areas of two melting peaks changed considerably with added nucleating agent. During isothermal crystallization, dependence of the relative degree of crystallization on time was described by the Avrami equation. The addition of nucleating agent caused an increase in the overall crystallization rate of PHBV, but did not influence the mechanism of nucleation and growth of the PHB crystals. The equilibrium melting temperature of PHBV was determined as 187°C. Analysis of kinetic data according to nucleation theories showed that the increase in crystallization rate of PHBV in the composite is due to the decrease in surface energy of the extremity surface. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2145–2152, 2002  相似文献   

15.
This article reports the mechanical and thermal properties of poly(butylene succinate) (PBS) biocomposites reinforced with industrially available waste silk fibers, fabricated with varying fiber contents and lengths. The result indicates that use of waste silk fibers may be a potential as reinforcement for effectively improving the static and dynamic mechanical properties of a biodegradable polymer matrix resin, depending on the waste silk fiber content and length in the present biocomposite system. The “as‐separated” waste silk/PBS biocomposites showed the maximum tensile and flexural properties at a fiber loading of 40 wt %, and the “chopped” waste silk/PBS biocomposites showed the optimal strength and modulus with waste silk fibers of 12.7 mm length. The chopped waste silk fibers play a more contributing role in improving the mechanical properties of waste silk/PBS biocomposites than the as‐separated waste silk fibers at a fixed fiber loading. Above the glass transition temperature, the storage modulus of waste silk/PBS biocomposites was significantly greater than that of PBS resin, especially in the higher temperature region. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4972–4980, 2006  相似文献   

16.
Composites produced from biodegradable polymeric matrixes reinforced with vegetable fibers have attractive mechanical properties and are environmentally friendly. This work is directed to the biodegradation of a composite made of a poly(hydroxybutyrate‐co‐hydroxyvalerate) matrix reinforced with curaua fibers (with and without alkaline treatment) in simulated soil. The composites were developed by extrusion and injection and were later buried in simulated soil according to the ASTM G160‐03 method. Scanning electron microscopy showed evidence of microbial attack on the samples surfaces. Infrared spectra showed that the composites biodegradation was mainly caused by erosion of the surface layer resulting from microorganisms activity. Thermogravimetric analysis pointed out reduced thermal stability of the samples, and results of differential scanning calorimetry showed that the degree of crystallinity increases and then decreases progressively throughout the degradation period, indicating that enzymatic degradation primarily occurs in the amorphous phase material and thereafter in the crystalline phase. For curaua composite fibers, reductions in tensile strength and elastic modulus are more significant, indicating that the presence of fibers promotes biodegradation of the curaua fiber. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40712.  相似文献   

17.
The effects of fumed silica on the crystallization behavior and thermal properties of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) were investigated. The PHBV/silica composites were prepared by a melt‐blending method. The nonisothermal crystallization, melting process, and isothermal crystallization kinetics of PHBV and PHBV/silica composites were characterized with differential scanning calorimetry. The spherulite development and morphology were observed by polarized optical microscopy. In addition, the thermal degradation properties were determined via thermogravimetric analysis. The results indicated that the melting and crystallization kinetics of PHBV were greatly affected by fumed silica, and this was due to the effective nucleation function of silica, which enhanced the crystallization process. The thermal onset degradation temperature of PHBV increased with the addition of fumed silica. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
Miscibility and properties of two atactic poly(methyl methacrylate)‐based blends [containing 10 and 20% of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate)] have been investigated as a function of thermal treatments. Differential scanning calorimetry and dynamic mechanical thermal analysis of blends quenched in liquid nitrogen or ice/water, after annealing at T > 190 °C, showed a single glass transition temperature, indicating miscibility of the components for the time‐temperature history. Two glass transition temperatures, equal to those of the pure components, are instead found for blends after annealing at T < 190 °C. Scanning electron microscopy confirmed the homogeneity for the former quenched blends and phase separation for the latter. These results indicate the presence of an upper critical solution temperature (UCST). Tensile experiments, performed on two series of samples annealed at temperatures above and below the UCST, showed that the copolyester induces a decrease of Young's modulus and stresses at yielding and break points, and a marked increase of elongation at break. Differences in tensile properties between the two series of annealed blends are accounted for by the physical state of the components at room temperature after annealing above or below the UCST. Copyright © 2004 Society of Chemical Industry  相似文献   

19.
Enabling the widespread utilization of poly[(3‐hydroxybutyrate)‐co‐(3‐hydroxyvalerate)] (PHBV) is strongly associated with enhancing its crystallization kinetics. In this article, we utilize a highly surface active (one reactive group per nanometer square) anion exchanged layered‐double hydroxide (LDH) functionalized by stearic acid to probe the crystallization kinetics of PHBV. Our prior work has shown that the addition of LDH decreases the cold crystallization and induces a melt recrystallization peak in PHBV. Since the melt‐recrystallization temperature shifted to higher temperature and its corresponding enthalpy increased with increasing LDH loading, this article is focused on understanding the effect of LDH on kinetics and energetics of PHBV crystallization. Both Avrami and Lauritzen–Hoffman modeling are utilized to develop a comprehensive understanding of thermal history effects through differential scanning calorimetry and polarized optical microscopy measurements. Five concentrations by weight of LDH are used: 1, 3, 5, and 7%. The results show that the addition of LDH promoted both primary and secondary nucleation at low concentrations but additional LDH resulted in primary nucleation alone. The crystallization rate and activation energy show a significant increase, which is accompanied by a decrease in the nucleation constant, the surface energy and the work of chain folding for PHBV crystallization. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2013  相似文献   

20.
Poly(L ‐lactide) (PLLA) and poly(3‐hydrobutyrate‐co‐3‐hydroxyvalerate) (PHBV) were blended with poly(butadiene‐co‐acrylonitrile) (NBR). Both PLLA/NBR and PHBV/NBR blends exhibited higher tensile properties as the content of acrylonitrile unit (AN) of NBR increased from 22 to 50 wt %. However, two separate glass transition temperatures (Tg) appeared in PLLA/NBR blends irrespective of the content of NBR, revealing that PLLA was incompatible with NBR. In contrast, a single Tg, which shifted along with the blend composition, was observed for PHBV/NBR50 blends. Moreover NBR50 suppressed the crystallization of PHBV, indicating that PHBV was compatible with NBR50. Decrease of both elongation modulus and stress at maximum load was less significant and increase of elongation at break was more pronounced in PHBV/NBR50 blends than in PLLA/NBR50 blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3508–3513, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号