首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(4‐acryloylmorpholine), poly(4‐acryloylmorpholine‐co‐2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid), and poly(2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) were synthesized by radical polymerization. The water‐soluble polymers obtained, containing tertiary amino, amide, and sulfonic acid groups, were investigated, in view of their metal binding properties, as polychelatogens by using the liquid‐phase polymer‐based retention technique, under different experimental conditions. The metal ions investigated were Ag(I), Cu(II), Co(II), Ni(II), Cd(II), Pb(II), Zn(II), Cr(III), and Al(III). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 180–185, 2006  相似文献   

2.
Copolymers of 2,3,4,5,6‐pentafluorostyrene (PFS) having a combination of high hydrophobicity and high glass transition temperature (Tg) are reported here for the first time. The copolymerization was carried out using N‐phenylmaleimide (NPM) as the comonomer and azobisisobutyronitrile (AIBN) as the initiator under both conventional thermal heating and microwave heating. The initial copolymerization rate was found to be higher under microwave heating than under thermal heating. The copolymerization parameters were determined using the Fineman–Ross method and were found to be r1 (NPM) = 0.28 and r2 (PFS) = 0.86. Increased incorporation of NPM in the copolymers led to an increase in Tg of the copolymers without significantly affecting the hydrophobicity of poly(2,3,4,5,6‐pentafluorostyrene). Thermal stability of the copolymers is also reported. Copyright © 2005 Society of Chemical Industry  相似文献   

3.
Poly(2‐acrylamido glycolic acid‐co‐2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) [P(AGA‐co‐APSA)] was synthesized by radical polymerization in an aqueous solution. The water‐soluble polymer, containing secondary amide, hydroxyl, carboxylic, and sulfonic acid groups, was investigated, in view of their metal‐ion‐binding properties, as a polychelatogen with the liquid‐phase polymer‐based retention technique under different experimental conditions. The investigated metal ions were Ag+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+, and Cr3+, and these were studied at pHs 3, 5, and 7. P(AGA‐co‐APSA) showed efficient retention of all metal ions at the pHs studied, with a minimum of 60% for Co(II) at pH 3 and a maximum close to 100% at pH 7 for all metal ions. The maximum retention capacity (n metal ion/n polymer) ranged from 0.22 for Cd2+ to 0.34 for Ag+. The antibacterial activity of Ag+, Cu2+, Zn2+, and Cd2+ polymer–metal complexes was studied, and P(AGA‐co‐APSA)–Cd2+ presented selective antibacterial activity for Staphylococcus aureus with a minimum inhibitory concentration of 2 μg/mL. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Two oxetane‐derived monomers 3‐(2‐cyanoethoxy)methyl‐ and 3‐(methoxy(triethylenoxy)) methyl‐3′‐methyloxetane were prepared from the reaction of 3‐methyl‐3′‐hydroxymethyloxetane with acrylonitrile and triethylene glycol monomethyl ether, respectively. Their homo‐ and copolyethers were synthesized with BF3· Et2O/1,4‐butanediol and trifluoromethane sulfonic acid as initiator through cationic ring‐opening polymerization. The structure of the polymers was characterized by FTIR and1H NMR. The ratio of two repeating units incorporated into the copolymers is well consistent with the feed ratio. Regarding glass transition temperature (Tg), the DSC data imply that the resulting copolymers have a lower Tg than pure poly(ethylene oxide). Moreover, the TGA measurements reveal that they possess in general a high heat decomposition temperature. The ion conductivity of a sample (P‐AN 20) is 1.07 × 10?5 S cm?1 at room temperature and 2.79 × 10?4 S cm?1 at 80 °C, thus presenting the potential to meet the practical requirement of lithium ion batteries for polymer electrolytes. Copyright © 2005 Society of Chemical Industry  相似文献   

5.
A series of thermoresponsive poly(γ‐propyl‐L‐glutamate)‐graft‐(oligo ethylene glycol)s (PPLG‐g‐OEGs) with different main‐chain and side‐chain lengths have been synthesized via copper‐mediated alkyne‐azide 1,3‐dipolar cycloaddition between poly(γ‐azidopropyl‐L‐glutamate)s (PAPLG) and propargyl terminated oligo ethylene glycols (Pr‐OEGs). Fourier transform infrared spectrometer analysis revealed that PAPLG10 adopted 39.4% β‐sheet, 47.4% α‐helix, and 13.2% random coil while PAPLG with longer main‐chain length (DP = 37 and 88) and PPLG‐g‐OEGs adopted exclusive α‐helix in the solid state. Circular dichroism analysis revealed that PPLG‐g‐OEGs adopted α‐helical conformations with helicities in the range of 50~100%. The thermoresponsive behaviors of PPLG‐g‐OEGs in water have been studied by dynamic light scattering. The polymer concentration, main‐/side‐chain length, and helicity collectively affected their cloud point temperatures. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41022.  相似文献   

6.
A poly[(R,S)‐3‐hydroxybutyrate] macroinitiator (PHB‐MI) was obtained through the condensation reaction of poly[(R,S)‐3‐hydroxybutyrate] (PHB) oligomers containing dihydroxyl end functionalities with 4,4′‐azobis(4‐cyanopentanoyl chloride). The PHB‐MI obtained in this way had hydroxyl groups at two end of the polymer chain and an internal azo group. The synthesis of ABA‐type PHB‐b‐PMMA block copolymers [where A is poly(methyl methacrylate) (PMMA) and B is PHB] via PHB‐MI was accomplished in two steps. First, multiblock active copolymers with azo groups (PMMA‐PHB‐MI) were prepared through the redox free‐radical polymerization of methyl methacrylate (MMA) with a PHB‐MI/Ce(IV) redox system in aqueous nitric acid at 40°C. Second, PMMA‐PHB‐MI was used in the thermal polymerization of MMA at 60°C to obtain PHB‐b‐PMMA. When styrene (S) was used instead of MMA in the second step, ABCBA‐type PMMA‐b‐PHB‐b‐PS multiblock copolymers [where C is polystyrene (PS)] were obtained. In addition, the direct thermal polymerization of the monomers (MMA or S) via PHB‐MI provided AB‐type diblocks copolymers with MMA and BCB‐type triblock copolymers with S. The macroinitiators and block copolymers were characterized with ultraviolet–visible spectroscopy, nuclear magnetic resonance spectroscopy, gel permeation chromatography, cryoscopic measurements, and thermogravimetric analysis. The increases in the intrinsic viscosity and fractional precipitation confirmed that a block copolymer had been obtained. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1789–1796, 2004  相似文献   

7.
Poly(3‐alkylthiophene)s represent a family of conjugated polymers that are soluble and processable, but still retaining the good electrical conductivity of the insoluble parent polymer thiophene ring backbone. Poly(3‐hexylthiophene) (P3HT) is reported to be a best candidate in the family for solar cell applications. In situ polymerization of 3‐hexylthiophene monomer with double‐walled carbon nanotubes (DWCNTs) has been attempted with the aim of addressing two main issues, namely, the interfacial bonding and proper dispersion of the carbon nanotubes in the polymer matrix to get a high‐performing polymer/nanocomposite. Fourier transform infrared spectroscopy, Raman, and X‐ray diffraction studies indicate the physical wrapping of the polymer on the nanotubes in the absence of any ground‐state interaction between them. The ultraviolet–visible measurements also support this view. The photoluminescence quenching indicates the effectiveness of the interface in the formation of the donor–acceptor‐type composite. The impressive conductivity values encourage the utility of the composites as photovoltaic material. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
The aim of this work was to synthesize and to characterize new pH‐sensitive hydrogels that can be used in the controlled release of drugs, useful for dermal treatments or ophthalmology's therapies. Copolymers containing 2‐hydroxyethyl methacrylate (HEMA) with different amounts of 2‐(diisopropylamino)ethyl methacrylate (DPA) (10 and 30 wt %) and different amounts of crosslinker agent, ethylene glycol dimethacrylate (EGDMA) (1 and 3 wt %) were prepared by bulk photo‐polymerization. The copolymers were fully characterized by using Fourier‐transform infrared (FTIR) spectra, differential scanning calorimetry, thermogravimetric analysis, UV–visible spectroscopy, and measuring water content and dynamic swelling degree. The results show that modifications in the amount of DPA and/or crosslinker in the hydrogel produce variations in the thermal properties. When adding of DPA, we observed an increase in the thermal stability and decomposition temperature, as well as a change in the mechanism of decomposition. Also a decrease in the glass transition temperature was observed with regard to the value for pure pHEMA, by the addition of DPA. The water content of the hydrogels depends on the DPA content and it is inversely proportional to both the pH value and the crosslinking degree. Pure poly‐HEMA films did not show important changes over the pH range studied in this work. The dynamic swelling curves show the overshooting effect associated with the incorporation of DPA, the pH of the solution, and the crosslinking density. On the other hand, no important variations in the optical properties were observed. The synthesized hydrogels are useful as a drug delivery pH‐sensitive matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
The crosslinked poly[N‐(3‐dimethylamino)propylmethacrylamide] [P(NDAPA)] and poly[N‐(3‐dimethylamino)propylmethacrylamide‐co‐acrylic acid] [P(NDAPA‐co‐AA)] were synthesized by radical polymerization. The resins were completely insoluble in water. The metal‐ion‐uptake properties were studied by a batch equilibrium procedure for the following metal ions: silver(I), copper(II), cadmium(II), zinc(II), lead(II), mercury(II), chromium(III), and aluminum(III). The P(NDAPA‐co‐AA) resin showed a lower metal‐ion affinity than P(NDAPA), except for Hg(II), which was retained at 71% at pH 2. At pH 5, the resin showed a higher affinity for Pb(II) (80%) and Cu(II) (60%), but its affinity was very low for Zn(II) and Cr(III). The polymer ligand–metal‐ion equilibrium was achieved during the first 20 min. By changing the pH, we found it possible to remove between 60 and 70% of Cd(II) and Zn(II) ions with (1M, 4M) HClO4 and (1M, 4M) HNO3. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5232–5239, 2006  相似文献   

10.
11.
New hole transport polymers have been synthesized by condensation polymerization of 4‐tolyldiphenylamine (TDPA) with various types of aldehyde. The reaction conditions have been investigated to yield polymers with high molecular weight. It is found that the molecular weight and yield of the TDPA–aldehyde polymers strongly depend on the electron donor–acceptor nature of the substituent on the aromatic ring of the aldehyde monomer. Structural characterization by 1H NMR spectroscopy shows that the addition condensation reaction occurs exclusively at the para position of TDPA. The electrochemical and optical properties of polymers have been investigated by cyclic voltammetry and UV–vis spectroscopy. Cyclic voltammograms of all polymers show well‐defined pairs of reduction and oxidation peaks, indicating that the polymers are electrochemically active. All polymers show low conductivities of magnitude 10?14 S cm?1. Differential scanning calori‐metry measurements reveal that TDPA–aldehyde polymers exhibit glass transitions in the range 170–230 °C. These polymers possess good solubility and the films show sufficient morphological stability. © 2001 Society of Chemical Industry  相似文献   

12.
A series of well‐defined dumbbell‐shaped triblock copolymers consisting of linear poly(ethylene glycol) (PEG) and comb‐like poly(ε‐caprolactone) (PCL) with varied PCL arm lengths have been synthesized via the sequential preparation of different generation terminal dendronized PEG and ring‐opening polymerization of ε‐caprolactone. The copolymers were characterized using Fourier transform infrared, 1H NMR and 13C NMR spectroscopy and gel permeation chromatography. Differential scanning calorimetry was performed to measure the glass transition temperature, melting point and degree of crystallinity and the PEG segment and PCL segment crystallization temperatures. The crystallization of the copolymers was also studied using X‐ray diffraction. The dumbbell‐shaped copolymers were further used to construct microspheres using a double emulsion method. Scanning electron microscopy and dynamic light scattering results showed the size of the microspheres was about 2 to 4 µm and the size distribution was quite narrow. Copyright © 2012 Society of Chemical Industry  相似文献   

13.
A kind of temperature‐sensitive water‐soluble polymers P(NIPAM‐HEMA‐AM) of N‐isopropylacrylamide (NIPAM), hydroxyethyl methacrylate (HEMA) and acrylamide (AM) were synthesized by free radical aqueous solution copolymerization. The polymers were characterized by Fourier transform infrared spectrum (FTIR) method. Solution properties, such as the influences of monomer ratios and additives on the low critical soluble temperature (LCST) of the polymer solutions as well as the viscosity‐temperature properties were studied. The results show that the polymer concentrations have no significant influence on the LCST of polymer solutions. The incorporation of HEMA units leads to a lower LCST, while AM units to a higher LCST. The additions of small molecules such as salt and surfactant also have significant effect on the LCST, the addition of NaCl decreases the LCST, while the addition of sodium dodecylbenzenesulfonate (SDBS) increases the LCST. The apparent viscosity of polymer solutions depends on temperature. The 1.5 wt % aqueous solutions of P(NIPAM‐HEMA‐AM) exhibits good thermo‐thickening behavior over 55°C, whereas the 0.8 wt % aqueous solutions do not show this behavior during the heating process. The aqueous solutions of P(NIPAM‐HEMA‐AM) are viscoelastic fluids, and the viscoelasticities mainly depend on temperature. Both the storage modulus (G') and loss modulus (G'') of 1.5 wt % polymer solutions increase with temperature. Over 55°C, G' exceeds G'', and the polymer solutions are elasticity‐dominated. In contrast, below 55°C, G'' is larger than G', and the polymer solutions are viscosity‐dominated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
A novel hydrophobically modified and cationic flocculant poly(acrylamide‐methacryloxyethyltrimethyl ammonium chloride‐methacryloxypropyltrimethoxy silane) (P(AM‐DMC‐MAPMS)) was synthesized by inverse emulsion polymerization. The molecular structure of hydrophobically cationic polyacrylamide (HCPAM) was characterized by FTIR and 1H‐NMR. The effects of DMC and MAPMS feed ratio on intrinsic viscosity and solubility were measured. The effects of hydrophobically cationic flocculants on reactive brilliant red X‐3B solution and kaolin suspension were studied. It was found that the introduction of MAPMS could increase the intrinsic viscosities of P(AM‐DMC‐MAPMS) and enhance the flocculation properties to anionic dye solution and kaolin suspension, but reduced their water‐solubility. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
A general overview of the optoelectronic properties of π‐conjugated polymers is presented. Two types of polymer are discerned: interchangeable structures of the same energy (degenerate), such as polyacetylene; and non‐degenerate polymers, such as poly(para‐phenylene). The band structures of degenerate and non‐degenerate polymers are related to their conductivities in doped and non‐doped states. In both cases, disorder and impurities play an important role in conductivity. Polarons, bipolarons and excitons are detailed with respect to doping and charge transfers. Given the fibrillic nature of these materials, the variable range hopping (VRH) law for semiconducting polymers is modified to account for metallic behaviours. Optoelectronic properties—electroluminescence and photovoltaic activity—are explained in terms of HOMO and LUMO bands, polaron‐exciton and charge movement over one or more molecules. The properties of H‐ or J‐type aggregates and their effects on transitions are related to target applications. Device structures of polymer light‐emitting diodes are explicitly linked to optimising polaron recombinations and overall quantum efficiencies. The particularly promising use of π‐conjugated polymers in photovoltaic devices is discussed. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
Anionic reactive maleate with hydrophobic oligosiloxane chain was synthesized to use as a stabilizer in the batch and seeded emulsion polymerization of traditional monomers (acrylates, methacrylates, styrene, etc.). Polymerizable surfactant is obtained in a three‐step synthesis, starting from the anionic polymerization of cyclic siloxanes, followed by the silylation of methanol with the obtained cyclic oligomer, and finishing with the acylation of the linear oligomer by maleic anhydride. The improved technique of the synthesis of 4‐chlorobutoxydimethylchlorosilane, one of the initial substances for obtaining siloxane monomer, was elaborated. The anionic polymerization of octamethylcyclotetrasiloxane using cyclic alkoxysilane was carried out to form siloxane cyclic oligomer for the first time. The chemical structure of the monomer synthesized was confirmed by IR spectroscopy and functional analysis. Critical micelle concentration of the obtained surfactant was measured. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 310–313, 2004  相似文献   

17.
A family of new polymers based on poly(4‐(1‐hydroxyalkyl)styrene), and its copolymers with styrene were synthesized and thoroughly characterized by 1H‐NMR, 13C‐NMR, FTIR, and UV spectroscopies. The chemical modification reactions of polystyrene (PS) was used as a novel method of performing the synthesis of poly(4‐(1‐hydroxyethyl‐co‐styrene)), poly(4‐(1‐hydroxypropyl‐co‐styrene)), poly(4‐(1‐hydroxybutyl‐co‐styrene)), and poly(4‐(1‐hydroxyphenylmethyl‐co‐styrene)). The novelty of this method lies in the incorporation of the desired mol % of the functional groups in polystyrene chain, to obtain random copolymers of desired composition. In preliminary testing/evaluation studies the utility and versatility of the new copolymers, which have the potential to be negative‐tone photoresist materials, were studied. Thus a few photoresist formulations based on poly(styrene‐co‐4‐(1‐hydroxyalkylstyrene)) were developed with 5 wt % of a photoacid generator. These studies suggested that the new copolymers synthesized by a simple and alternate method could have the same potential as a photoresist material when compared with the polymers synthesized by the polymerization of the corresponding functional monomer. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1902–1914, 2004  相似文献   

18.
In this study, a novel well‐defined epoxy mid‐chain functional macromonomer of poly(ε‐caprolactone) (PCL) has been synthesized by ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL) and epoxidation on workup with 3‐chloroperoxybenzoic acid. The ROP of ε‐CL monomer in bulk at 110°C, by means of a dihydroxy functional initiator namely, 3‐cyclohexene‐1,1‐dimethanol in conjunction with stannous‐2‐ethylhexanoate, (Sn(Oct)2), yielded a well‐defined PCL with a cyclohexene mid‐chain group. The epoxidation of the cyclohexene (CH) mid‐chain group of PCL was performed using 3‐chloroperoxybenzoic acid. GPC, IR, and 1H‐NMR analyses revealed that a low‐polydispersity macromonomer of PCL with the desired cyclohexene oxide (CHO) functionality at the mid‐chain was obtained. The photoinduced cationic polymerizations of this macromonomer yielded comb‐shaped and graft copolymers. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
The free‐radical copolymerization of water‐soluble poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) was carried out with a feed monomer ratio of 75:25 mol %, and the total monomer concentration was 2.67M. The synthesis of the copolymer was carried out in dioxane at 70°C with benzoyl peroxide as the initiator. The copolymer composition was obtained with elemental analysis and 1H‐NMR spectroscopy. The water‐soluble polymer was characterized with elemental analysis, Fourier transform infrared, 1H‐ and 13C‐NMR spectroscopy, and thermal analysis. Additionally, viscosimetric measurements of the copolymer were performed. The thermal behavior of the copolymer and its complexes were investigated with differential scanning calorimetry (DSC) and thermogravimetry techniques under a nitrogen atmosphere. The copolymer showed high thermal stability and a glass transition in the DSC curves. The separation of various metal ions by the water‐soluble poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) reagent in the aqueous phase with liquid‐phase polymer‐based retention was investigated. The method was based on the retention of inorganic ions by this polymer in a membrane filtration cell and subsequent separation of low‐molar‐mass species from the polymer/metal‐ion complex formed. Poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) could bind metal ions such as Cr(III), Co(II), Zn(II), Ni(II), Cu(II), Cd(II), and Fe(III) in aqueous solutions at pHs 3, 5, and 7. The retention percentage for all the metal ions in the polymer was increased at pH 7, at which the maximum retention capacity could be observed. The interaction of inorganic ions with the hydrophilic polymer was determined as a function of the pH and filtration factor. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 178–185, 2006  相似文献   

20.
We report the synthesis, characterization, and gas sensing properties of a styrene copolymer bearing α‐thiophene end group and fullerene (C60) pendant moieties P(S‐co‐CMS‐C60). First, the copolymer of styrene (S) and chloromethylstyrene (CMS) monomers was prepared in bulk via a bimolecular nitroxide‐mediated radical polymerization (NMP) technique using benzoyl peroxide (BPO) as the radical initiator and nitroxy‐functional thiophene compound (Thi‐TEMPO) as the co‐radical and this gave α‐thiophene end‐capped copolymer P(S‐co‐CMS). The chloromethylstyrene units of P(S‐co‐CMS) allowed further side‐chain functionalization onto P(S‐co‐CMS). The obtained P(S‐co‐CMS) was then reacted with sodium azide (NaN3) and this led to the copolymer with pendant azide groups, P(S‐co‐CMS‐N3), and then grafted with electron‐acceptor C60 via the reaction between N3 and C60. The final product was characterized by using NMR, FTIR, and UV–vis methods. Electrical characterization of P(S‐co‐CMS‐C60) thin film was also investigated at between 30 and 100 °C as the ramps of 10 °C. Temperature dependent electrical characterization results showed that P(S‐co‐CMS‐C60) thin film behaves like a semiconductor. Furthermore, P(S‐co‐CMS‐C60) was employed as the sensing layer to investigate triethylamine (TEA), hydrogen (H2), acetone, and ethanol sensing properties at 100 °C. The results revealed that P(S‐co‐CMS‐C60) thin film has a sensing ability to H2. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43641.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号