首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dimethyl terephthalate (DMT) and ethylene glycol (EG) were used for the preparation of poly(ethylene terephthalate) (PET), and poly(ethylene glycol) (PEG) was added as a soft segment to prepare a PET–PEG copolymer with a shape‐memory function. MWs of the PEG used were 200, 400, 600, and 1000 g/mol, and various molar ratios of EG and PEG were tried. Their tensile and shape‐memory properties were compared at various points. The glass‐transition and melting temperatures of PET–PEG copolymers decreased with increasing PEG molecular weight and content. A tensile test showed that the most ideal mechanical properties were obtained when the molar ratio of EG and PEG was set to 80:20 with 200 g/mol of PEG. The shape memory of the copolymer with maleic anhydride (MAH) as a crosslinking agent was also tested in terms of shape retention and shape recovery rate. The amount of MAH added was between 0.5 and 2.5 mol % with respect to DMT, and tensile properties and shape retention and recovery rate generally improved with increasing MAH. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 27–37, 2002  相似文献   

2.
The widespread application of poly(3‐hydroxybutyrate) (PHB) in the food packaging and biomedical fields has been hindered by its high brittleness, slow crystallization, poor thermal stability, and narrow processing window. To overcome these limitations, a mixture of biodegradable and biocompatible plasticizers was used to modify PHB. Epoxidized soybean oil (ESO), acetyl tributyl citrate, poly(ethylene glycol) 4000 (PEG4000), and poly(ethylene glycol) 6000 (PEG6000) were tested to improve PHB melt processing and to achieve balanced thermal and mechanical properties. These plasticizers increased the flexibility and decreased the melt viscosity, improving the processability. The tensile strength was maintained within the limit of experimental error for ESO and decreased slightly (6–7%) for the other plasticizers. PEG6000 and ESO delayed the decomposition process of PHB. The plasticizers did not hinder the crystallization, and poly(ethylene glycol)s increased the crystallinity. The change in the interplanar distance and crystallite size, correlated with lamellar stack dimensions, gave more information on the plasticizers' effects in PHB. The blend with 5 wt % ESO was considered suitable for the fabrication of marketable PHB films. This study showed that it is possible to tailor the rheological, thermal, and mechanical behavior of a commercial PHB through the addition of a second plasticizer. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44810.  相似文献   

3.
Binary and ternary blends composed of poly(lactic acid) (PLA), starch, and poly(ethylene glycols) (PEGs) with different molecular weights (weight‐average molecular weights = 300, 2000, 4000, 6000, and 10, 000 g/mol) were prepared, and the plasticizing effect and miscibility of PEGs in poly(lactic acid)/starch (PTPS) or PLA were intensively studied. The results indicate that the PEGs were effective plasticizers for the PTPS blends. The small‐molecule plasticizers of PEG300 (i.e., the Mw of PEG was 300g/mol) and glycerol presented better plasticizing effects, whereas its migration and limited miscibility resulted in significant decreases in the water resistance and elongation at break. PEG2000, with a moderate molecular weight, was partially miscible in sample PTPS3; this led to better performance in water resistance and mechanical properties. For higher molecular weight PEG, its plasticization for both starch and PLA was depressed, and visible phase separation also occurred, especially for PTPS6. It was also found that the presence of PEG significantly decreased the glass‐transition temperature and accelerated the crystallization of the PLA matrix, depending on the PEG molecular weight and concentration. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41808.  相似文献   

4.
Ring‐opening polymerization of L ‐ or D ‐lactide was realized at 140 °C for a period of 7 days in the presence of dihydroxyl poly(ethylene glycol) (PEG), with M?n = 4000 g mol?1, using zinc lactate as initiator. The resulting poly(L ‐lactide)–PEG–poly(L ‐lactide) and poly(D ‐lactide)–PEG–poly(D ‐lactide) triblock copolymers are water soluble with polylactide (PLA) block length ranging from 11 to 17 units. Both the tube inverting method and rheological measurements were used to evaluate the gelation properties of aqueous solutions containing single copolymers or L /D copolymer pairs. Stereocomplexation between poly(L ‐lactide) and poly(D ‐lactide) blocks is observed for mixed solutions. Hydrogel formation is detected in the case of relatively long PLA blocks (DP PLA = 17), but not for copolymers with shorter PLA blocks (DP PLA = 11–13) due to partial racemization of L ‐lactyl units. Racemization is largely reduced when the reaction time is shortened to 1 day. Under these conditions, DP PLA of 8 is sufficient for the stereocomplexation of PLA–PEG block copolymers, and DP PLA above 10 leads to the formation of hydrogels of PLA–PEG block copolymers. On the other hand, racemization appears as a general phenomenon in the (co)polymerization of L ‐lactide with Zn(Lac)2 as initiator, although it is negligible or undetectable in the case of high molar mass polymers. Therefore, racemization is the limiting factor for the stereocomplexation‐induced gelation of water‐soluble PLA–PEG block copolymers where the PLA block length generally ranges from 10 to 30. Reaction conditions including initiator, time and temperature should be strictly controlled to minimize racemization. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
Poly(L‐lactide)‐poly(ethylene glycol) multiblock copolymers with predetermined block lengths were synthesized by polycondensation of PLA diols and PEG diacids. The reaction was carried out under mild conditions, using dicyclohexylcarbodiimide as the coupling agent and dimethylaminopyridine as the catalyst. The resulting copolymers were characterized by various analytical techniques, such as GPC, viscometry, 1H‐NMR, FTIR, DSC, X‐ray diffractometry, and contact angle measurement. The results indicated that these copolymers presented outstanding properties pertinent to biomedical use, including better miscibility between the two components, low crystallinity, and hydrophilicity. Moreover, the properties of the copolymers can be modulated by adjusting the block length of the two components or the reaction conditions. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1729–1736, 2002; DOI 10.1002/app.10580  相似文献   

6.
Poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) were melt-blended and extruded into films in the PLA/PEG ratios of 100/0, 90/10, 70/30, 50/50, and 30/70. It was concluded from the differential scanning calorimetry and dynamic mechanical analysis results that PLA/PEG blends range from miscible to partially miscible, depending on the concentration. Below 50% PEG content the PEG plasticized the PLA, yielding higher elongations and lower modulus values. Above 50% PEG content the blend morphology was driven by the increasing crystallinity of PEG, resulting in an increase in modulus and a corresponding decrease in elongation at break. The tensile strength was found to decrease in a linear fashion with increasing PEG content. Results obtained from enzymatic degradation show that the weight loss for all of the blends was significantly greater than that for the pure PLA. When the PEG content was 30% or lower, weight loss was found to be primarily due to enzymatic degradation of the PLA. Above 30% PEG content, the weight loss was found to be mainly due to the dissolution of PEG. During hydrolytic degradation, for PLA/PEG blends up to 30% PEG, weight loss occurs as a combination of degradation of PLA and dissolution of PEG. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1495–1505, 1997  相似文献   

7.
Acetyl tri‐n‐butyl citrate (ATBC) and poly(ethyleneglycol)s (PEGs) with different molecular weights (from 400 to 10000) were used in this study to plasticize poly(L‐lactic acid) (PLA). The thermal and mechanical properties of the plasticized polymer are reported. Both ATBC and PEG are effective in lowering the glass transition (Tg) of PLA up to a given concentration, where the plasticizer reaches its solubility limit in the polymer (50 wt % in the case of ATBC; 15–30 wt %, depending on molecular weight, in the case of PEG). The range of applicability of PEGs as PLA plasticizers is given in terms of PEG molecular weight and concentration. The mechanical properties of plasticized PLA change with increasing plasticizer concentration. In all PLA/plasticizer systems investigated, when the blend Tg approaches room temperature, a stepwise change in the mechanical properties of the system is observed. The elongation at break drastically increases, whereas tensile strength and modulus decrease. This behavior occurs at a plasticizer concentration that depends on the Tg‐depressing efficiency of the plasticizer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1731–1738, 2003  相似文献   

8.
Atactic poly(3‐hydroxybutyrate) (a‐PHB) and block copolymers of poly(ethylene glycol) (PEG) with poly(ε‐caprolactone) (PCL‐b‐PEG) were synthesized through anionic polymerization and coordination polymerization, respectively. As demonstrated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) measurements, both chemosynthesized a‐PHB and biosynthesized isotactic PHB (i‐PHB) are miscible with the PEG segment phase of PCL‐b‐PEGs. However, there is no evidence showing miscibility between both PHBs and the PCL segment phase of the copolymer even though PCL has been block‐copolymerized with PEG. Based on these results, PCL‐b‐PEG was added, as a compatibilizer, to both the PCL/a‐PHB blends and the PCL i‐PHB blends. The blend films were obtained through the evaporation of chloroform solutions of mixed components. Excitingly, the improvement in mechanical properties of PCL/PHB blends was achieved as anticipated initially upon the addition of PCL‐b‐PEG. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2600–2608, 2001  相似文献   

9.
《Polymer Composites》2017,38(6):1118-1126
The mechanical properties of mesoporous silica (MCM‐41) filled poly(l ‐lactic acid) (PLA4032D) composites and PLA4032D/poly(ethylene glycol) (PEG) composites were investigated. It was found that the Young's modulus increased while tensile strength decreased with increasing the filler content; the V‐notched impact fracture strengths of both Izod and Charpy for the PLA4032D/PEG/MCM‐41 composites increased while they decreased slightly for the PLA4032D/MCM‐41 composites, the unnotched Charpy impact strength of both the two composites decreased with increasing the filler loading; the flexural modulus increased slightly while the flexural strength decreased slightly with increasing the filler content. The toughening mechanisms of the composites were discussed by means of observing the impact fracture surface with a scanning electronic microscope, and the synergistic effect between the PEG and MCM‐41 should be one of the major toughening mechanisms. POLYM. COMPOS., 38:1118–1126, 2017. © 2015 Society of Plastics Engineers  相似文献   

10.
Poly(lactic acid) (PLA) has great potentials to be processed into films for packaging applications. However, film production is difficult to carry out due to the brittleness and low melt strength of PLA. In this investigation, linear PLA (L‐PLA) was plasticized with poly(ethylene glycol) (PEG) having MW of 1000 g mol?1 in various PEG concentrations (0, 5, 10, 15, and 20 wt%). In relation to plasticizer content, the impact resistance and crystallinity of L‐PLA was increased, whereas a decrease in glass transition temperature and lower stiffness was observed. Nevertheless, the phase separation has been found in samples which contained PEG greater than 10 wt%. The dynamic and shear rheological studies showed that the plasticized PLA possessed lower viscosity and more pronounced elastic properties than that of pure PLA. Both storage and loss moduli decreased with PEG loading at all frequencies while storage modulus exhibited weak frequency dependence with increasing PEG content. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

11.
通过热塑加工方法制备了增塑改性聚乙烯醇(mPVA)/聚乙二醇(PEG)复合材料,研究了PEG相对分子质量和含量对mPVA/PEG复合材料热性能、热塑加工性能,转矩流变性能和力学性能的影响.结果表明:加入适量PEG可降低mPVA的熔点,表明PEG对mPVA有一定的增塑作用;随着PEG用量的增加,mPVA的熔体流动速率增大...  相似文献   

12.
Poly(lactic acid) PLA was plasticized with low molecular weight poly(ethylene glycol) PEG‐200 to improve the ductility of PLA, while maintaining the plasticizer content at maximum 10 wt%. Low molecular weight of PEG enables increased miscibility with PLA and more efficient reduction of glass transition temperature (Tg). This effect is enhanced not only by the low molecular weight but also by its higher content. The tensile properties demonstrated that the addition of PEG‐200 to PLA led to an increase of elongation at break (>7000%), but a decrease of both tensile strength and tensile modulus. The plasticization of the PLA with PEG‐200 effectively lowers Tg as well as cold‐crystallization temperature, increasing with plasticizer content. SEM micrographs reveal plastic deformation and few long threads of a deformed material are discernible on the fracture surface. The use of low molecular weight PEG‐200 reduces the intermolecular force and increases the mobility of the polymeric chains, thereby improving the flexibility and plastic deformation of PLA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4576–4580, 2013  相似文献   

13.
In this work, a surfactant‐free emulsion polymerization method was utilized to synthesize poly(styrene‐ran‐methyl acrylate) (PSMA) at a styrene/(methyl acrylate) mole ratio of 75/25 with the aim to compatibilize high impact polystyrene (HIPS)/poly(lactic acid) (PLA) interface. HIPS/PLA blends with different PSMA contents were prepared. Their phase morphologies, mechanical properties, and rheological and crystallization behaviors were investigated using scanning electron microscopy, tensile tests, rotational rheometry, and differential scanning calorimetry. The rheological results showed that the complex viscosity, storage moduli, and loss moduli of PLA/HIPS blends were enhanced with increasing PSMA content. A decrease in the degree of crystallinity of PLA in PLA/HIPS blends with the addition of PSMA was observed in the differential scanning calorimetry results. It was also revealed that the addition of a small amount of PSMA can effectively improve the compatibility and thus the interfacial adhesion of the PLA/HIPS blends, thereby reducing the size of the HIPS dispersion phase. When 1 wt % of PSMA was used, compared with the PLA/HIPS blends without PSMA, the tensile strength and notched Charpy impact strength of PLA/HIPS blends were improved by 95.3% and 104.8%, respectively. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45799.  相似文献   

14.
Commercial grade poly(ethylene terephthalate), (PET, intrinsic viscosity = 0.80 dL/g) and poly(butylene terephthalate), (PBT, intrinsic viscosity = 1.00 dL/g) were melt blended over the entire composition range using a counterrotating twin‐screw extruder. The mechanical, thermal, electrical, and rheological properties of the blends were studied. All of the blends showed higher impact properties than that of PET or PBT. The 50:50 blend composition exhibited the highest impact value. Other mechanical properties also showed similar trends for blends of this composition. The addition of PBT increased the processability of PET. Differential scanning calorimetry data showed the presence of both phases. For all blends, only a single glass‐transition temperature was observed. The melting characteristics of one phase were influenced by the presence of the other. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 75–82, 2005  相似文献   

15.
Poly(l ‐lactic acid) (PLLA) is a good biomedical polymer material with wide applications. The addition of poly(ethylene glycol) (PEG) as a plasticizer and the formation of stereocomplex crystals (SCs) have been proved to be effective methods for improving the crystallization of PLLA, which will promote its heat resistance. In this work, the crystallization behavior of PEG and PLLA/poly(d ‐lactic acid) (PDLA) in PLLA/PDLA/PEG and PEG‐b‐PLLA/PEG‐b‐PDLA blends has been investigated using differential scanning calorimetry, polarized optical microscopy and X‐ray diffraction. Both SCs and homocrystals (HCs) were observed in blends with asymmetric mass ratio of PLLA/PDLA, while exclusively SCs were observed in blends with approximately equal mass ratio of PLLA/PDLA. The crystallization of PEG was only observed for the symmetric blends of PLLA39k/PDLA35k/PEG2k, PLLA39k/PDLA35k/PEG5k, PLLA69k/PDLA96k/PEG5k and PEG‐b‐PLLA31k/PEG‐b‐PDLA27k, where the mass ratio of PLLA/PDLA was approximately 1/1. The results demonstrated that the formation of exclusively SCs would facilitate the crystallization of PEG, while the existence of both HCs and SCs could restrict the crystallization of PEG. The crystallization of PEG is related to the crystallinity of PLLA and PDLA, which will be promoted by the formation of SCs. © 2017 Society of Chemical Industry  相似文献   

16.
An entirely biosourced blend composed of poly(lactic acid) (PLA), starch, and wood flour (WF) was prepared by a co‐extruder with glycerol as a plasticizer. The morphology, rheological properties, and mechanical properties of the WF/starch/PLA blends were comprehensively analyzed. The results showed that with the decrease of the starch/WF ratio, the morphology experienced a large transformation, and the compatibility of the blends was found to be superior to other blends, with a starch/wood flour ratio of 7/3. The dynamic mechanical thermal analysis (DMA) results demonstrated the incompatibility of the components in WF/starch/PLA blends. Following the decrease of the starch/WF ratio, the storage modulus (G″) and the complex viscosity (η*) of the blends increased. The mechanical strength first increased, and then decreased with the increase of the WF concentration. The water absorption results showed that the water resistance of the blends was reduced with the lower starch/WF ratio. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44743.  相似文献   

17.
Biodegradable and photocurable multiblock copolymers of various compositions were synthesized by the high‐temperature solution polycondensation of poly(ε‐caprolactone) (PCL) diols of molecular weight (Mn) = 3000 and poly(ethylene glycol)s (PEG) of Mn = 3000 with a dichloride of 5‐cinnamoyloxyisophthalic acid (ICA) as a chain extender, followed by irradiation by a 400 W high‐pressure mercury lamp (λ > 280 nm) to form a network structure. The gel contents increased with photocuring time, reaching a level of over 90% after 10 min for all copolymers without a photoinitiator. The thermal and mechanical properties of the photocured copolymers were examined by DSC and tensile tests. In cyclic thermomechanical tensile tests, the photocured ICA/PCL/PEG copolymer films showed good shape‐memory properties at 37–60°C, with both shape fixity ratio and shape recovery ratio over 90% at a maximum tensile strain of 100–300%. The water absorption of these copolymers and their rate of degradation in a phosphate buffer solution (pH 7.0) at 37°C increased significantly with increasing PEG content. The novel photocured ICA/PCL/PEG multiblock copolymers are potentially useful in biomedical applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
A two‐step procedure was used to synthesize the cellulose acetate butyrate and poly(ethylene glycol) graft copolymer (CAB‐g‐PEG). By choosing the appropriate composition, the crosslinked graft copolymer or not could be obtained. Then, the CAB‐g‐PEG copolymer was blended with poly(3‐hydroxybutyrate) (PHB), to further improve the mechanical properties of PHB. The results indicated that PHB and CAB‐g‐PEG that were not crosslinked were miscible over the entire composition range. As the CAB‐g‐PEG copolymer increased in the PHB/CAB‐g‐PEG blends, the melting temperature of the blends decreased, the crystallization of PHB became more difficult, and the crystallinity of the blend and PHB phase all decreased. The tensile properties and impact strength of the PHB/CAB‐g‐PEG blends were superior to the PHB/CAB blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1471–1478, 2006  相似文献   

19.
This study investigates the effect of nanocrystalline cellulose (NCC) and polyethylene glycol (PEG) on the hydrolytic degradation behavior of poly(lactic acid) (PLA) bio-nanocomposites compared with that of neat PLA, under specific environmental condition, namely at 37°C in a pH 7.4 phosphate buffer medium for a time period up to 60 days. The water absorption, mass loss, molecular weight, and the morphologies of nanocomposites before and after degradation were explored. Thermogravimetric analysis (TGA) was used to study the thermal decomposition of the PLA/NCC/PEG nanocomposites before and after degradation. The results showed that the presence of hydrophilic NCC and PEG significantly accelerated the hydrolytic degradation of PLA, which was related to the rapid dissolution of PEG causing easy access of water molecules to the composites and initiating fast hydrolytic chain scission of PLA. The thermal degradation temperatures of the nanocomposites slightly decreased due to the poor thermal stability of NCC in comparison with that of the neat PLA. After degradation, the thermal stability of the separated PLA from nanocomposites significantly decreased because the molecular decreased during the hydrolytic process. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46933.  相似文献   

20.
Blown films from poly(butylene adipate‐co‐terephthalate) and poly(lactide) (PLA) blends were investigated. The blends were prepared in a twin‐screw extruder, in the presence of small amounts of dicumyl peroxide (DCP). The influence of DCP concentration on film blowing, rheological, mechanical, and thermal properties of the blends is reported in this article. Rheological results showed a marked increase in polymer melt strength and elasticity with the addition of DCP. As a consequence, the film homogeneity and the stability of the bubble were improved. The modified blend films, compared with the unmodified blend, showed an improvement in tensile strength and modulus with a slight loss in elongation. Fourier transform infrared and gel results revealed that chain scission and branching were more significant than crosslinking when the DCP loadings in the blends were not higher than 0.7%. A reduction in melt temperatures of PLA was observed due to difficulty in chain crystallization. The concentrations of DCP strongly affected the melting temperatures but had an insignificant effect on the decomposition behavior of the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号