首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polybutadiene‐g‐poly(styrene‐co‐acrylonitrile) (PB‐g‐SAN) impact modifiers with different polybutadiene (PB)/poly(styrene‐co‐acrylonitrile) (SAN) ratios ranging from 20.5/79.5 to 82.7/17.3 were synthesized by seeded emulsion polymerization. Acrylonitrile–butadiene–styrene (ABS) blends with a constant rubber concentration of 15 wt % were prepared by the blending of these PB‐g‐SAN copolymers and SAN resin. The influence of the PB/SAN ratio in the PB‐g‐SAN impact modifier on the mechanical behavior and phase morphology of ABS blends was investigated. The mechanical tests showed that the impact strength and yield strength of the ABS blends had their maximum values as the PB/SAN ratio in the PB‐g‐SAN copolymer increased. A dynamic mechanical analysis of the ABS blends showed that the glass‐transition temperature of the rubbery phase shifted to a lower temperature, the maximum loss peak height of the rubbery phase increased and then decreased, and the storage modulus of the ABS blends increased with an increase in the PB/SAN ratio in the PB‐g‐SAN impact modifier. The morphological results of the ABS blends showed that the dispersion of rubber particle in the matrix and its internal structure were influenced by the PB/SAN ratio in the PB‐g‐SAN impact modifiers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2165–2171, 2005  相似文献   

2.
Tetramethylpolycarbonate‐block‐poly(styrene‐co‐acrylonitrile) (TMPC‐block‐SAN) block copolymers containing various amounts of acrylonitrile (AN) were examined as compatibilizers for blends of polycarbonate (PC) with poly(styrene‐co‐acrylonitrile) (SAN) copolymers. To explore the effects of block copolymers on the compatibility of PC/SAN blends, the average diameter of the dispersed particles in the blend was measured with an image analyzer, and the interfacial properties of the blends were analyzed with an imbedded fibre retraction technique and an asymmetric double‐cantilever beam fracture test. Reduction in the average diameter of dispersed particles and effective improvement in the interfacial properties was observed by adding TMPC‐block‐SAN copolymers as compatibilizer of PC/SAN blend. TMPC‐block‐SAN copolymer was effective as a compatibilizer when the difference in the AN content of SAN copolymer and that of SAN block in TMPC‐block‐SAN copolymer was less than about 10 wt%. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
In this work, blends of poly(butylene terephthalate) (PBT) and linear low‐density polyethylene (LLDPE) were prepared. LLDPE was used as an impact modifier. Since the system was found to be incompatible, compatibilization was sought for by the addition of the following two types of functionalized polyethylene: ethylene vinylacetate copolymer (EVA) and maleic anhydride‐grafted EVA copolymer (EVA‐g‐MAH). The effects of the compatibilizers on the rheological and mechanical properties of the blends have been also quantitatively investigated. The impact strength of the PBT–LLDPE binary blends slightly increased at a lower concentration of LLDPE but increased remarkably above a concentration of 60 wt % of LLDPE. The morphology of the blends showed that the LLDPE particles had dispersed in the PBT matrix below 40 wt % of LLDPE, while, at 60 wt % of LLDPE, a co‐continuous morphology was obtained, which could explain the increase of the impact strength of the blend. Generally, the mechanical strength was decreased by adding LLDPE to PBT. Addition of EVA or EVA‐g‐MAH as a compatibilizer to PBT–LLDPE (70/30) blend considerably improved the impact strength of the blend without significantly sacrificing the tensile and the flexural strength. More improvement in those mechanical properties was observed in the case of the EVA‐g‐MAH system than for the EVA system. A larger viscosity increase was also observed in the case of the EVA‐g‐MAH than EVA. This may be due to interaction of the EVA‐g‐MAH with PBT. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 989–997, 1999  相似文献   

4.
Poly(ethylene‐co‐propylene) (EPR) was functionalized to varying degrees with glycidyl methacrylate (GMA) by melt grafting processes. The EPR‐graft‐GMA elastomers were used to toughen poly(butylene terephthalate) (PBT). Results showed that the grafting degree strongly influenced the morphology and mechanical properties of PBT/EPR‐graft‐GMA blends. Compatibilization reactions between the carboxyl and/or hydroxyl of PBT and epoxy groups of EPR‐graft‐GMA induced smaller dispersed phase sizes and uniform dispersed phase distributions. However, higher degrees of grafting (>1.3) and dispersed phase contents (>10 wt%) led to higher viscosities and severe crosslinking reactions in PBT/EPR‐graft‐GMA blends, resulting in larger dispersed domains of PBT blends. Consistent with the change in morphology, the impact strength of the PBT blends increased with the increase in EPR‐graft‐GMA degrees of grafting for the same dispersion phase content when the degree of grafting was below 1.8. However, PBT/EPR‐graft‐GMA1.8 displayed much lower impact strength in the ductile region than a comparable PBT/EPR‐graft‐GMA1.3 blend (1.3 indicates degree of grafting). Morphology and mechanical results showed that EPR‐graft‐GMA 1.3 was more suitable in improving the toughness of PBT. SEM results showed that the shear yielding properties of the PBT matrix and cavitation of rubber particles were major toughening mechanisms. Copyright © 2006 Society of Chemical Industry  相似文献   

5.
The phase morphology developing in immiscible poly(styrene‐co‐acrylonitrile) (SAN)/ethylene–propylene–diene monomer (EPDM) blends was studied with an in situ reactively generated SAN‐g‐EPDM compatibilizer through the introduction of a suitably chosen polymer additive (maleic anhydride) and 2,5‐dimethyl‐2,5‐di‐(t‐butyl peroxy) hexane (Luperox) and dicumyl peroxide as initiators during melt blending. Special attention was paid to the experimental conditions required for changing the droplet morphology for the dispersed phase. Two different mixing sequences (simple and two‐step) were used. The product of two‐step blending was a major phase surrounded by rubber particles; these rubber particles contained the occluded matrix phase. Depending on the mixing sequence, this particular phase morphology could be forced or could occur spontaneously. The composition was stabilized by the formation of the SAN‐g‐EPDM copolymer between the elastomer and addition polymer, which was characterized with Fourier transform infrared. As for the two initiators, the blends with Luperox showed better mechanical properties. Scanning electron microscopy studies revealed good compatibility for the SAN/EPDM blends produced by two‐step blending with this initiator. Dynamic mechanical thermal analysis studies showed that the two‐step‐prepared blend with Luperox had the best compatibility. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Poly(lactic acid)/poly(butylene terephthalate) (PLA/PBT) blends with 3, 5, and 10 wt % of PBT were produced in a twin‐screw extruder, with the addition of ethylene–glycidyl methacrylate copolymer as compatibilizer. An uncompatibilized PLA/PBT blend with 5 wt % of PBT was prepared for comparison studies. The epoxy reactive groups in the compatibilizer allowed modification of the interfacial tension in the blends and reduced the PBT dimensions. The crystallinity of the blends was studied, and its influence on mechanical properties was analyzed. Tensile tests showed an increase in strain at break from 3% for neat PLA to 49% for PLA with 3 wt % PBT, while the tensile modulus dropped from 3.59 GPa to 3.35 GPa for the same samples. Izod results showed a transition from a brittle behavior of PLA to a ductile one for compatibilized blends. These results indicate that the nanometer‐size dispersed phase was effective in changing the deformation behavior of the matrix without a significant loss of modulus. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45951.  相似文献   

7.
The article deals with method of preparation, rheological properties, phase structure, and morphology of binary blend of poly(ethylene terephthalate) (PET)/poly(butylene terephthalate) (PBT) and ternary blends of polypropylene (PP)/(PET/PBT). The ternary blend of PET/PBT (PES) containing 30 wt % of PP is used as a final polymer additive (FPA) for blending with PP and subsequent spinning. In addition commercial montane (polyester) wax Licowax E (LiE) was used as a compatibilizer for spinning process enhancement. The PP/PES blend fibers containing 8 wt % of polyester as dispersed phase were prepared in a two‐step procedure: preparation of FPA using laboratory twin‐screw extruder and spinning of the PP/PES blend fibers after blending PP and FPA, using a laboratory spinning equipment. DSC analysis was used for investigation of the phase structure of the PES components and selected blends. Finally, the mechanical properties of the blend fibers were analyzed. It has been found that viscosity of the PET/PBT blends is strongly influenced by the presence of the major component. In addition, the major component suppresses crystallinity of the minor component phase up to a concentration of 30 wt %. PBT as major component in dispersed PES phase increases viscosity of the PET/PBT blend melts and increases the tensile strength of the PP/PES blend fibers. The impact of the compatibilizer on the uniformity of phase dispersion of PP/PES blend fibers was demonstrated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4222–4227, 2006  相似文献   

8.
To modify the mechanical properties of a poly(l ‐lactide) (PLLA)/poly(para‐dioxanone) (PPDO) 85/15 blend, poly(para‐dioxanone‐co‐l ‐lactide) (PDOLLA) was used as a compatibilizer. The 85/15 PLLA/PPDO blends containing 1–5 wt % of the random copolymer PDOLLA were prepared by solution coprecipitation. Then, the thermal, morphological, and mechanical properties of the blends with different contents of PDOLLA were studied via differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and tensile testing, respectively. The DSC result revealed that the addition of PDOLLA into the blends only slightly changed the thermal properties by inhibiting the crystallization degree of the poly(l ‐lactide) in the polymer blends. The SEM photos indicated that the addition of 3 wt % PDOLLA into the blend was ideal for making the interface between the PLLA and PPDO phases unclear. The tensile testing result demonstrated that the mechanical properties of the blends containing 3 wt % PDOLLA were much improved with a tensile strength of 48 MPa and a breaking elongation of 214%. Therefore, we concluded that the morphological and mechanical properties of the PLLA/PPDO 85/15 blends could be tailored by the addition of the PDOLLA as a compatibilizer and that the blend containing a proper content of PDOLLA had the potential to be used as a medical implant material. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41323.  相似文献   

9.
The reactive compatibilization effect of a small molecule, bismaleimide (BMI), on poly(butylene terephthalate) (PBT)/low‐density polyethylene (LDPE) and PBT/ethylene propylene diene (EPDM) rubber blends were investigated. All the blends were prepared by melt blending in the mixing chamber of a Haake Rheocord. The particle size of dispersed phase was reduced by >ten times by adding 1.2 wt % of BMI as observed with scanning electron microscopy. The torque‐time curve recorded during mixing showed that the addition of BMI leads to a significant increase in the viscosity of PBT, LDPE, EPDM, and the blends. This indicates that a chemical reaction has taken place. It was confirmed that free radicals are involved in the reactions because the addition of a stabilizer to the blends has removed all the compatibilizing effect, and the torque‐time curve does not show any increase in viscosity. A possible mechanism of compatibilization is proposed. The shear forces during melt mixing cause the rupture of chemical bond in the polymers, which form macroradicals of PBT, LDPE, or EPDM. These macroradicals react with BMI to form PBT‐BMI‐LDPE or PBT‐BMI‐EPDM copolymers. These in situ‐formed copolymers act as compatibilizers to give a significant refinement of the blend morphology. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2049–2057, 1999  相似文献   

10.
The effects of compatibilizer on the morphological, thermal, mechanical, and rheological properties of poly(methyl methacrylate) (PMMA)/poly(N‐methyl methacrylimide) (PMMI) (70/30) blends were investigated. The compatibilizer used in this study was styrene–acrylonitrile–glycidyl methacrylate (SAN‐GMA) copolymer. Morphological characterization of the PMMA/PMMI (70/30) blend with SAN‐GMA showed a decrease in PMMI droplet size with an increase in SAN‐GMA. The glass‐transition temperature of the PMMA‐rich phase became higher when SAN‐GMA was added up to 5 parts per hundred resin by weight (phr). The flexural and tensile strengths of the PMMA/PMMI (70/30) blend increased with the addition of SAN‐GMA up to 5 phr. The complex viscosity of the PMMA/PMMI (70/30) blends increased when SAN‐GMA was added up to 5 phr, which implies an increase in compatibility between the PMMA and PMMI components. From the weighted relaxation spectrum, which was obtained from the storage modulus and loss modulus, the interfacial tension of the PMMA/PMMI (70/30) blend was calculated using the Palierne emulsion model and the Choi‐Schowalter model. The results of the morphological, thermal, mechanical, and rheological studies and the values of the interfacial tension of the PMMA/PMMI (70/30) blends suggest that the optimum compatibilizer concentration of SAN‐GMA is 5 phr. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43856.  相似文献   

11.
A series of poly(acrylonitrile‐butadiene‐styrene) (ABS) grafting modifiers were synthesized by emulsion grafting poly(acrylonitrile‐styrene) (SAN) copolymer onto polybutadiene (PB) latex rubber particles. The chain transfer reagent tert‐dodecyl mercaptan (TDDM) was used to regulate the grafting degree of ABS and the molecular weight of SAN copolymers. By blending these ABS modifiers with Chlorinated polyvinyl chloride (CPVC) resin, a series of CPVC/ABS blends were obtained. The morphology, compatibility, and the mechanical properties of CPVC/ABS blends were investigated. The scanning electron microscope (SEM) studies showed that the ABS domain all uniformly dispersed in CPVC matrix. Dynamic mechanical analyses (DMA) results showed that the compatibility between CPVC and SAN became enhanced with the TDDM content. From the mechanical properties study of the CPVC/ABS blends, it was revealed that the impact strength first increases and then decreases with the TDDM content, which means that the compatibility between CPVC and the SAN was not the only requirement for maximizing toughness. The decreasing of tensile strength and the elongations might attribute to the lower entanglement between chains of CPVC and SAN. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

12.
In a blend of two immiscible polymers a controlled morphology can be obtained by adding a block or graft copolymer as compatibilizer. In the present work blends of low‐density polyethylene (PE) and polyamide‐6 (PA‐6) were prepared by melt mixing the polymers in a co‐rotating, intermeshing twin‐screw extruder. Poly(ethylene‐graft‐polyethylene oxide) (PE‐PEO), synthesized from poly(ethylene‐co‐acrylic acid) (PEAA) (backbone) and poly(ethylene oxide) monomethyl ether (MPEO) (grafts), was added as compatibilizer. As a comparison, the unmodified backbone polymer, PEAA, was used. The morphology of the blends was studied by scanning electron microscopy (SEM). Melting and crystallization behavior of the blends was investigated by differential scanning calorimetry (DSC) and mechanical properties by tensile testing. The compatibilizing mechanisms were different for the two copolymers, and generated two different blend morphologies. Addition of PE‐PEO gave a material with small, well‐dispersed PA‐spheres having good adhesion to the PE matrix, whereas PEAA generated a morphology characterized by small PA‐spheres agglomerated to larger structures. Both compatibilized PE/PA blends had much improved mechanical properties compared with the uncompatibilized blend, with elongation at break b) increasing up to 200%. Addition of compatibilizer to the PE/PA blends stabilized the morphology towards coalescence and significantly reduced the size of the dispersed phase domains, from an average diameter of 20 μm in the unmodified PE/PA blend to approximately 1 μm in the compatibilized blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2416–2424, 2000  相似文献   

13.
The effect of poly(D ,L ‐lactide‐copara‐dioxanone) (PLADO) as the compatibilizer on the properties of the blend of poly(para‐dioxanone) (PPDO) and poly(D ,L ‐lactide) (PDLLA) has been investigated. The 80/20 PPDO/PDLLA blends containing from 1% to 10% of random copolymer PLADO were prepared by solution coprecipitation. The PLADO component played a very important role in determining morphology, thermal, mechanical, and hydrophilic properties of the blends. Addition of PLADO into the blends could enhance the compatibility between dispersed PDLLA phase and PPDO matrix; the boundary between the two phases became unclear and even the smallest holes were not detected. On the other hand, the position of the Tg was composition dependent; when 5% PLADO was added into blend, the Tg distance between PPDO and PDLLA was shortened. The blends with various contents of compatibilizer had better mechanical properties compared with simple PPDO/PDLLA binary polymer blend, and such characteristics further improved as adding 5% random copolymers. The maximum observed tensile strength was 29.05 MPa for the compatibilized PPDO/PDLLA blend with 5% PLADO, whereas tensile strength of the uncompatibilized PPDO/PDLLA blend was 14.03 MPa, which was the lowest tensile strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Blends of poly(styrene‐co‐acylonitrile) (SAN) with ethylene–propylene–diene monomer (EPDM) rubber were investigated. An improved toughness–stiffness balance of the SAN/EPDM blend was obtained when an appropriate amount of acrylonitrile–EPDM–styrene (AES) graft copolymer was added, prepared by grafting EPDM with styrene–acrylonitrile copolymer, and mixed thoroughly with both of the two components of the blend. Morphological observations indicated a finer dispersion of the EPDM particles in the SAN/EPDM/AES blends, and particle size distribution became narrower with increasing amounts of AES. Meanwhile, it was found that the SAN/EPDM blend having a ratio of 82.5/17.5 by weight was more effective in increasing the impact strength than that of the 90/10 blend. From dynamic mechanic analysis of the blends, the glass‐transition temperature of the EPDM‐rich phase increased from ?53.9 to ?46.2°C, even ?32.0°C, for the ratio of 82.5/17.5 blend of SAN/EPDM, whereas that of the SAN‐rich phase decreased from 109.2 to 108.6 and 107.5°C with the additions of 6 and 10% AES copolymer contents, respectively. It was confirmed that AES graft copolymer is an efficient compatibilizer for SAN/EPDM blend. The compatibilizer plays an important role in connecting two phases and improving the stress transfer in the blends. Certain morphological features such as thin filament connecting and even networking of the dispersed rubber phase may contribute to the overall ductility of the high impact strength of the studied blends. Moreover, its potential to induce a brittle–ductile transition of the glassy SAN matrix is considered to explain the toughening mechanism. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1685–1697, 2004  相似文献   

15.
This work aims at studying the toughening process of poly(butylene terephthalate) (PBT) through its blends with styrene‐butadiene‐styrene block copolymers (SBS), in the presence of poly(styrene‐ran‐glicydil methacrylate) (PS‐GMA) as reactive compatibilizer. High values of impact strength were attained for PBT/SBS blends without the compatibilizer; however, this improvement is achieved for blends with SBS having similar viscosity compared to PBT, at high SBS content (40 wt %) and for blends prepared under specific processing conditions. The efficiency of the in situ compatibilization of PBT/SBS blends by PS‐GMA was found to be strongly dependent on the SBS and PS‐GMA molecular characteristics. Better compatibilizing results were observed through fine phase morphologies and lower ductile to brittle transition temperatures (DBTT) as the interfacial interaction and stability of the in situ formed compatibilizer are maximized, that is, when the miscibility between SBS and PS‐GMA and reaction degree between PBT and PS‐GMA are maximized. For the PBT/SBS/PS‐GMA blends under study, this was found when it is used the SBS with higher polystyrene content (38 wt %) and with longer PS blocks (Mw = 20,000 g mol?1) and also the PS‐GMA with moderate GMA contents (4 wt %) and with molecular weight similar to the critical one for PS entanglements (Mc = 35,000 g mol?1). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5795–5807, 2006  相似文献   

16.
The effects of dynamic vulcanization and blend ratios on mechanical properties and morphology of thermoplastic elastomeric (TPE) compositions, based on blends of nitrile rubber (NBR) and poly(styrene‐co‐acrylonitrile) (SAN), were studied. The TPE composition prepared by adding a rubber‐curatives masterbatch to softened SAN yields higher mechanical properties than that prepared by adding curatives to the softened plastic–rubber preblend. The blends having a higher rubber–plastic ratio (60 : 40 to 80 : 20) display thermoplastic elastomeric behavior, whereas those having a higher plastic–rubber ratio (50 : 50 to 90 : 10) display the behavior of impact‐resistant plastics. DSC studies revealed that NBR and SAN are thermodynamically immiscible. SEM studies of the thermoplastic elastomeric compositions show that SAN forms the matrix in which fine particles of NBR form the dispersed phase. It was further confirmed by dynamic mechanical thermal analysis. Dynamic vulcanization causes a decrease in the size of dispersed particles and improvement in mechanical properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1976–1987, 2003  相似文献   

17.
Dynamic viscoelastic properties of blends of poly(methyl methacrylate) (PMMA) and poly(styrene‐co‐acrylonitrile) (SAN) with various AN contents were measured to evaluate the influence of SAN composition, consequently χ parameter, upon the melt rheology. PMMA/SAN blends were miscible and exhibited a terminal flow region characterized by Newtonian flow, when the acrylonitrile (AN) content of SAN ranges from 10 to 27 wt %. Whereas, PMMA/SAN blends were immiscible and exhibited a long time relaxation, when the AN content in SAN is less than several wt % or greater than 30 wt %. Correspondingly, melt rheology of the blends was characterized by the plots of storage modulus G′ against loss modulus G″. Log G′ versus log G″ plots exhibited a straight line of slope 2 for the miscible blends, but did not show a straight line for the immiscible blends because of their long time relaxation mechanism. The plateau modulus, determined as the storage modulus G′ in the plateau zone at the frequency where tan δ is at maximum, varied linearly with the AN content of SAN irrespective of blend miscibility. This result indicates that the additivity rule holds well for the entanglement molecular weights in miscible PMMA/SAN blends. However, the entanglement molecular weights in immiscible blends should have “apparent” values, because the above method to determine the plateau modulus is not applicable for the immiscible blends. Effect of χ parameter on the plateau modulus of the miscible blends could not be found. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
Poly(styrene‐ethylene/butylene‐styrene) (SEBS) was used as a compatibilizer to improve the thermal and mechanical properties of recycled poly(ethylene terephthalate)/linear low‐density polyethylene (R‐PET/LLDPE) blends. The blends compatibilized with 0–20 wt % SEBS were prepared by low‐temperature solid‐state extrusion. The effect of SEBS content was investigated using scanning electron microscope, differential scanning calorimeter, dynamic mechanical analysis (DMA), and mechanical property testing. Morphology observation showed that the addition of 10 wt % SEBS led to the deformation of dispersed phase from spherical to fibrous structure, and microfibrils were formed at the interface between two phases in the compatibilized blends. Both differential scanning calorimeter and DMA results revealed that the blend with 20 wt % SEBS showed better compatibility between PET and LLDPE than other blends studied. The addition of 20 wt % of SEBS obviously improved the crystallizibility of PET as well as the modulus of the blends. DMA analysis also showed that the interaction between SEBS and two other components enhanced at high temperature above 130°C. The impact strength of the blend with 20 wt % SEBS increased of 93.2% with respect to the blend without SEBS, accompanied by only a 28.7% tensile strength decrease. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
A series of acrylonitrile–butadiene–styrene (ABS) copolymer/poly(butylene terephthalate) (PBT)/acrylonitrile‐styrene‐glycidyl methacrylate (ASG) blends with various compositions were prepared and characterized in this study. When the fraction of ABS exceeds a critical value there is a rapid increase in notched impact strength of ABS/PBT blends no matter whether the compatibilizer ASG is present. By combining morphology observation and notched impact results, we found that the ductile‐brittle transition of the blends is closely related to the morphology inversion. The notched impact strength jumps from 15.9 to 33.4 kJ/m2 when phase inversion of ABS occurs at its fraction of 58 wt %. Accordingly, a possible toughening mechanism involved in the blends is proposed on the basis of a careful analysis of fracture energy, crack propagation behavior and fracture surface morphology. It is believed that the continuous ABS phase plays the critical role in toughening ABS/PBT blends. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46051.  相似文献   

20.
Immiscible blends of poly(2,6‐dimethyl‐1,4‐phenylene ether)/poly(styrene‐co‐acrylonitrile) (PPE/SAN) were batch‐foamed using CO2 as a blowing agent as a function of foaming temperature, foaming time, and blend composition. Evaluation of the resulting cellular morphology revealed an enhanced foamability of SAN with PPE contents up to 20 wt% as indicated by a similar volume expansion but a significantly reduced mean cell size. This behavior is related to a heterogeneous nucleation activity by the dispersed PPE phase. A further increasing PPE content, however, leads to increasing foam densities as well as nonuniform foam morphologies. The changes in the foaming behavior can be correlated with the melt rheological properties and the corresponding blend morphology. Shear‐rheological investigations revealed an onset of percolation of the dispersed PPE phase between 20 and 40 wt%, and a transition towards cocontinuity at 60 wt%. The materials response under uniaxial elongational flow, as assessed by Rheotens measurements, revealed an increase in elongational viscosity scaling with the PPE content, similar to the shear data. However, the strain hardening behavior was reduced by increasing PPE contents and, at 20 wt%, the drawability revealed a significant drop‐both phenomena limiting the foamability of polymers. In summary, the present study discusses fundamental aspects of foaming immiscible PPE/SAN blends. POLYM. ENG. SCI., 48:2111–2125, 2008. © 2008 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号