首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biodegradable organic–inorganic hybrids based on poly(?‐caprolactone) (PCL) and polyhedral oligomeric silsesquioxane (POSS) with 5.3–21.3 wt % POSS were synthesized via ring‐opening polymerization (ROP). Chemical structures of the polymers were characterized by proton nuclear magnetic resonance (1H NMR), fourier transform infrared spectroscopy (FTIR), and gel permeation chromatography (GPC). X‐ray diffraction (XRD) analysis illustrated that both POSS and PCL segment in POSS/PCL hybrids could crystallize and form two well‐separated crystalline phases except in the one with low content of POSS (5.3 wt %). Melting behavior and non‐isothermal crystallization kinetics of POSS/PCL hybrids were studied by differential scanning calorimeter (DSC). The results indicated that the POSS segment suppressed crystallization of the PCL segment to some extent. Polarizing optical microscope (POM) images showed that POSS/PCL hybrids with the highest POSS loading (21.3 wt %) possessed “snowflake” shape crystals whereas the ones with relatively low POSS loading exhibited classic spherulites. Thermogravimetry (TG) measurement revealed that thermal degradation of POSS/PCL hybrids proceeded by four‐step while PCL homopolymers degraded by a single step. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44113.  相似文献   

2.
《Polymer Composites》2017,38(2):396-403
A cationic gemini surfactant (N‐isopropyl‐N , N‐dimethyldodecan 1‐aminium bromide) was synthesized by quaternization reaction. The synthesized surfactant was characterized by Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopy. Modified Na–bentonite (organoclay) was obtained by the intercalation of a gemini surfactant between the layers of sodium bentonite and characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), FTIR, thermogravimetry–differential thermal analysis (TGA–DTA) and differential scanning calorimetry (DSC) techniques. The results of XRD, TEM, FTIR, TGA, and corresponding DSC analysis indicate that gemini surfactant has been successfully intercalated into the clay layers. Rubber‐based nanocomposites have been prepared by incorporating various concentration of organically modified bentonite on to natural rubber/styrene–butadiene rubber (NR/SBR) rubber blend (75/25) using two roll mill. Effect of organoclay content on XRD, curing, mechanical, and scanning electron microscopy (SEM) properties of the nanocomposites are investigated. The morphological study showed the intercalation of nanoclay in NR/SBR blend chain. It was found that the organoclay decrease the optimum and scorch time of the curing reaction, increase maximum torque and the curing rate, which was attributed to the further intercalation during vulcanization process. Mechanical properties such as tensile strength, modulus and elongation at break have improved. POLYM. COMPOS., 38:396–403, 2017. © 2015 Society of Plastics Engineers  相似文献   

3.
In this article, carbazole‐grafted methacrylic polysiloxane (MA‐CZ‐PDMS) macromonomer was synthesized and its structure was confirmed by proton nuclear magnetic resonance (1H NMR). The polysiloxane macromonomer can homogeneously copolymerize with methyl methacrylate (MMA) to prepare transparent and foldable carbazole‐grafted polysiloxane‐poly(methyl methacrylate) (PDMS‐PMMA) membranes with a high refractive index (RI). The membranes were characterized by light transmittance, RI value, and dynamic mechanical thermal analysis (DMTA). The results indicated that the carbazole‐grafted PDMS‐PMMA membranes had excellent light transmittance that decreased slightly with increasing carbazole‐grafted polysiloxane content. Incorporation of carbazole‐grafted polysiloxane in the materials improved its RI value; however decreased the glass transmission temperature (Tg) that can be adjusted to less than 30°C, enable the membrane foldable at room temperature. The data demonstrate that the carbazole‐grafted PDMS‐PMMA membranes have a potential application as high RI intraocular lens (IOL) suitable for implantation by minimally invasive surgery. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42491.  相似文献   

4.
Xylok polybenzoxazine with acetylene group terminals (XPBZAs) were synthesized by the Mannich‐like condensation of Xylok prepolymer, formaldehyde, aminophenylacetylene, and aniline, and their structures were characterized by Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H NMR). The curing behavior of XPBZAs was determined by differential scanning calorimetry and FTIR. Thermal behavior and dynamic mechanical properties of the cured XPBZAs were investigated using thermogravimetric analysis and dynamic mechanical analysis. The results showed glass transition temperature (Tg), the thermal stability, and anaerobic char residue of cured XPBZAs increased as the content of acetylene groups increased. POLYM. ENG. SCI., 50:1751–1757, 2010. © 2010 Society of Plastics Engineers  相似文献   

5.
The crosslinked polysiloxanes were directly synthesized by anionic ring‐opening copolymerization of octaisobutyl‐polyhedral oligomeric silsesquioxane (POSS) as a multifunctional monomer with octamethylcyclotetrasiloxane (D4) under base catalysts such as potassium hydroxide (KOH) or tetramethylammonium hydroxide (Me4 NOH) siloxanolate. The mechanism of anionic ring‐opening copolymerization of octaisobutyl‐POSS and D4 was discussed and the influences of the polar additive N,N‐dimethylacetamide on gelation time at different temperatures were investigated. The results of gel content and swelling ratio, GPC, solid‐state 29Si and 13C NMR, FTIR, XRD show that octaisobutyl‐POSS is reacted and most of the product is crosslinked. The DSC and TG results indicate that the crosslinked polysiloxanes exhibit distinct glass transition temperatures (Tg) and excellent thermal stability. Compared to that under KOH siloxanolate, the crosslinked polysiloxane synthesized with Me4NOH siloxanolate has better preferable thermal stability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3848–3856, 2006  相似文献   

6.
A new pathway for the preparation of polysiloxane oligomers bearing benzoxazine side groups were reported via the hydrolysis and co‐polycondensation of benzoxazinyl siloxane (SBZ) with dimethyldiethoxysilane (DEDMS). The structures of SBZ and oligomers were characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. The average molecular weights of the obtained oligomers were estimated from size exclusion chromatography and 1H‐NMR to be in the range of 2000–4000. The oligomers gave transparent films by casting in THF solution. The films were further thermally treated to produce crosslinked films via the ring opening polymerization of benzoxazine side group. The effects of siloxane content on polymerization behavior, glass transition temperature, and mechanical properties of the polybenzoxazine thermosets were investigated. Tensile test of the films revealed that the elongation at break increased with increasing siloxane content. The elongation at break of poly(I‐50) was up to 12.1%. Dynamic mechanical analysis of the thermosets showed that the Tgs were in the range of 119–165°C. Thermogravimetic analysis also revealed a better thermal stability as evidenced by the 5% weight loss temperatures in the range of 363–390°C. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40960.  相似文献   

7.
A new organic–inorganic hybrid material was prepared through reactive blending of hydrogenated carboxylated nitrile rubber (HXNBR) with epoxycyclohexyl polyhedral oligomeric silsesquioxanes (epoxycyclohexyl POSS). The structure of the composite was characterized by Fourier transform infrared spectroscopy (FTIR) and solid‐state 13C Nuclear Magnetic Resonance spectra (solid‐state 13C‐NMR). The differential scanning calorimetry (DSC) at different heating rates was conducted to investigate the curing kinetics. A single overall curing process by an nth‐order function (1 ? α)n was considered, and multiple‐heating‐rate models (Kissinger, Flynn–Wall–Ozawa, and Crane methods) and the single‐heating‐rate model were employed. The apparent activation energy (Ea) obtained showed dependence on the POSS content and the heating rate (β). The overall reaction order n was practically constant and close to 1. The isoconversion Flynn–Wall–Ozawa method was also performed and fit well in the study. With the single‐heating‐rate model, the average Ea for the compound with a certain POSS content, 66.90–104.13 kJ/mol was greater than that obtained with Kissinger and Flynn–Wall–Ozawa methods. Furthermore, the calculated reaction rate (dα/dt) versus temperature curves fit with the experimental data. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
A polybenzoxazine/polysiloxane hybrid has been prepared by sol–gel process and ring‐opening polymerization. For this purpose, first a functionalized benzoxazine was synthesized from bisphenol A, paraformaldehyde and 3‐(trimethoxysilyl) propylamine, with initial molar ratio 1 : 4 : 2, and 95% yield. The structure of the monomer was characterized by Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance. The sol–gel process and curing behavior have been studied by FTIR spectroscopy and differential scanning calorimetry. The dynamic mechanical thermal analysis of the hybrid material (Bz‐PSi) showed higher Tg and storage modulus respect to the conventional polybenzoxazine (Bz‐BA). Also, the thermogravimetric analysis revealed a better thermal stability. The high limiting oxygen index (LOI) values (about LOI = 32) confirmed similar effective flame retardance properties of the hybrid material respect to conventional benzoxazine. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
A new type of epoxy resin, which contained phosphorus oxide and nitrogen groups in the main chain, was synthesized. The structure of the new type of epoxy resin was confirmed by infrared (IR) spectroscopy, 1H nuclear magnetic resonance (1H‐NMR), and 13C‐NMR spectroscopic techniques. In addition, compositions of the new synthesized epoxy resin (TGDMO) with three curing agents, for example, bis(3‐aminophenyl) methylphosphine oxide (BAMP), 4,4′‐diaminodiphenylmethane (DDM), and 4,4′‐diaminodiphenylsulfone (DDS), were used for making a comparison of its curing reactivity, heat, and flame retardancy with that of Epon 828 and DEN 438. The reactivities were measured by differential scanning calorimetry (DSC). Through the evaluation of thermal gravimetric analysis (TGA), those polymers which were obtained through the curing reactions between the new epoxy resin and three curing agents (BAMP, DDM, and DDS) also demonstrated excellent thermal properties as well as a high char yield. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 413–421, 1999  相似文献   

10.
Poly(vinyl pyrrolidone‐co‐isobutyl styryl polyhedral oligomeric silsesquioxane)s (PVP–POSS) were synthesized by one‐step polymerization and characterized using FTIR, high‐resolution 1H‐NMR, solid‐state 13C‐NMR, 29Si‐NMR, GPC, and DSC. The POSS content can be controlled by varying the POSS feed ratio. The Tg of the PVP–POSS hybrid is influenced by three main factors: (1) a diluent role of the POSS in reducing the self‐association of the PVP; (2) a strong interaction between the POSS siloxane and the PVP carbonyl, and (3) physical aggregation of nanosized POSS. At a relatively low POSS content, the role as diluent dominates, resulting in a decrease in Tg. At a relatively high POSS content, the last two factors dominate and result in Tg increase of the PVP–POSS hybrid. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2208–2215, 2004  相似文献   

11.
Effects of two different polyhedral oligomeric silsesquioxane (POSS), an acrylisobutyl POSS (AIBuPOSS) containing an acrylate group along with seven isobutyl group on its cage and an octaisobutyl POSS where the acrylate group is absent, on vulcanization behavior, mechanical properties, and thermal stability of peroxide vulcanized ethylene‐propylene‐diene rubber (EPDM) were investigated. The POSS was incorporated into the EPDM by melt mixing with POSS content of 0–10 part per hundred of rubber (phr). Oscillating disk rheometer analysis revealed that the acrylate group of the POSS are activated by dicumyl peroxide and improves the peroxide crosslinking efficiency of EPDM rubber. Solid state 29Si‐nuclear magnetic resonance spectroscopy analysis and field emission scanning electron microscopy with energy dispersive X‐ray analysis of the EPDM/POSS vulcanizates showed that the AIBuPOSS are covalently grafted onto the EPDM chain during vulcanization and are dispersed uniformly at the nanometer scale in the rubber matrix. The EPDM/AIBuPOSS nanocomposites exhibit great improvement in tensile, tear strength, and modulus with a concurrent increase in elongation‐at‐break. Enhanced thermal stability in the nanocomposite was also observed. POLYM. ENG. SCI., 55:2814–2820, 2015. © 2015 Society of Plastics Engineers  相似文献   

12.
A series of poly(vinyl pyrrolidone‐co‐octavinyl polyhedral oligomeric silsesquioxanes) (PVP‐POSS) organic–inorganic hybrid nanocomposites containing different percentages of POSS were prepared via free radical polymerization and characterized by FTIR, high‐resolution 1H‐NMR, solid‐state 29Si‐NMR, GPC, DSC, and TGA. POSS contents in these nanocomposites can be effectively controlled by varying the POSS feed ratios which can be accurately quantified by FTIR curve calibration. On the basis of 29Si‐NMR spectra, average numbers of reacted vinyl groups of each octavinyl‐POSS macromer are calculated to be 5–7, which depends on POSS feed ratios. Both GPC and DSC results indicate that these nanocomposites display network structure and the degree of crosslinking increases with the increase of the POSS content. The incorporation of POSS into PVP significantly improves their thermal properties (Tg and Tdec) primarily due to crosslinking structure and dipole–dipole interaction between POSS cores and PVP carbonyl groups. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Incorporation of pre‐reacted monofunctional polyhedral oligomeric silsesquioxane (POSS)–epoxy adducts dramatically improves dispersion of POSS in epoxy–amine networks. The relationship between reaction kinetics and mechanism for formation of POSS–epoxy adducts versus reaction temperature was investigated. Reactivities of epoxy–monoamine functional POSS molecules were determined using in situ reaction monitoring by dynamic dielectric sensing and 29Si NMR spectroscopy. The amine‐functional POSS–epoxy isothermal reaction showed reduced reactivity due to reduced molecular mobility, that is, diffusion limitations. Kinetic parameters were determined by fitting 29Si NMR data to the model of Kamal that was extended to include diffusion. Fitting of this model to experimental data showed very good agreement over the entire conversion range for pre‐reaction between amine‐functionalized POSS and epoxy. An autocatalytic mechanism, the same as that for the neat epoxy–amine systems, was indicated. Gel permeation chromatography, scanning electron microscopy and transmission electron microscopy were used to investigate molecular weight evolution and morphology of final networks cured by 4,4′ diaminodiphenyl sulfone using pre‐reacted POSS–epoxy adducts. POSS aggregate size decreased with increased pre‐reaction temperature; more homogenous POSS dispersion was observed with higher pre‐reaction temperature. Dynamic mechanical analysis demonstrated that Tg of composites decreased slightly compared to that of the neat matrix and there appeared to be little change in microstructural heterogeneity. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45994.  相似文献   

14.
《Polymer Composites》2017,38(9):1792-1799
A series of poly(acrylonitrile‐co‐hexyl methacrylate), PAN‐co‐PHMA, copolymers with various hexyl methacrylate (HMA) contents were synthesized by emulsion technique. The incorporation of HMA units into the copolymers was confirmed by Fourier transform infrared and proton nuclear magnetic resonance (1H‐NMR) spectroscopy. Glass transition temperatures (T g) and thermal decomposition temperatures of copolymers were determined by differential scanning calorimetry and thermogravimetric analysis. The T g of copolymers were lowered monotonically by increasing HMA content, while thermal stabilities of copolymers were enhanced. The frequency dependence of dielectric properties of three different amounts of LiClO4 salt doped copolymer films was investigated. The influence of molar fraction of HMA on dielectric constant and ac‐conductivity of copolymer films was examined. Samples with higher HMA contents showed better stability and conductivity, as a result of increase in free volume and the mobility of the dipoles. The ac conductivity of copolymers was also improved by increasing LiClO4 salt which was due to the existence of more charge carriers. PAN(88)‐co‐PHMA(12) copolymer with 1.5 mol% of lithium salt exhibited ionic conductivity of the 7.8 × 10−4 S/cm at 298 K. POLYM. COMPOS., 38:1792–1799, 2017. © 2015 Society of Plastics Engineers  相似文献   

15.
Poly(ethylene terephthalate) (PET) chips were coated by trisilanolphenyl–polyhedral oligomeric silsesquioxane (T‐POSS) and hexakis (para‐allyloxyphenoxy) cyclotriphosphazene (PACP) using the predispersed solution method, and PET/PACP/T‐POSS hybrids were further prepared by the melt‐blending method. The influence of T‐POSS on the rheological, thermal, and mechanical properties and flame retardancy of PET/PACP composites were discussed. The results suggest that T‐POSS was homogeneously dispersed in the PET matrix, which reduced the negative effects on polymer rheology and mechanical properties. For the PET/4%PACP/1%T‐POSS sample, the tensile strength at break and Tg increased from 29.67 MPa and 81.7 °C (PET/5%PACP) to 34.8 MPa and 85.8 °C, respectively, but the sample also self‐extinguished within 2 s, and the heat release capacity was reduced by 27.9% in comparison with that of neat PET.© 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45912.  相似文献   

16.
A new class of hydroxyl-functionalized polydimethylsiloxane-block-hydroxyl graft acrylate prepolymer (PDMS-b-HGAP) copolymers was synthesized. The copolymers were characterized using Fourier transform infrared spectroscopy as well as 1H and 13C nuclear magnetic resonance spectroscopy. The hydroxyl groups of the HGAP were reacted with the chlorine terminal in the PDMS to yield a triblock copolymer consisting of two segments of PDMS linked to a HGAP segment. The induced surface reconstruction of silicone rubber (SR)by blending polysiloxane reactants with bifunctional PDMS-b-HGAP copolymers and curing using mold materials having high critical surface tension such as polyethyleneterephthalate was attempted to improve the adhesion between chemically-inert SR and polyurethane (PU). Surface characterization using Foruier transform infrared-attenuated total reflectance indicated that the surface of the SR was enriched with HGAP. The increased content of surface HGAP was suggested to account for the improved adhesion between SR and PU.  相似文献   

17.
Octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane (OpePOSS) was employed as a nanocrosslinker of novolac resin to prepare the organic–inorganic networks. The crosslinking reaction was investigated by means of Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy via model reaction. Thermal analyses indicate that the glass transition temperatures (Tg’s) and thermal stability of the organic–inorganic networks increased with increasing the content of POSS. Contact angle measurements show that the organic–inorganic nanocomposites displayed a significant enhancement in surface hydrophobicity as well as reduction in surface free energy. The improvement in surface properties was ascribed to the presence of POSS moiety in place of polar component of phenolic thermosets.  相似文献   

18.
Diphenyl iodonium hexafluorophosphate salt and N‐alkyl morpholino acetophenone were shown to be effective photocatalyst generators for the cross‐linking of α,ω‐silanol terminated silicone oligomers. These two photoacid and photobase‐induced polycondensation pathways provided an attractive and efficient alternative to toxic and expensive organometallic catalysts. The utility of this novel UV‐curing process was demonstrated with a combination of time‐resolved infrared spectroscopy to follow the fast reaction kinetics and solid‐state 29Si nuclear magnetic resonance to investigate the polysiloxane network. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39875.  相似文献   

19.
Carbon–silica core–shell fibers (which unusually consist of carbon nanofibers coated with silica) were synthesized using a two-step process. First, fluorination of carbon nanofibers (CNFs) allows their homogenous dispersion into a polysiloxane matrix. A longlife dispersion of nanofibers in solvated polysiloxane has been prepared. Second, the polysiloxane/fluorinated carbon was thermally treated in air until 700 °C. Defluorination and conversion of polysiloxane into silica occur and result in carbon–silica core–shell fibers. The thermal treatment of the polysiloxane/carbon and the resulting silica/carbon–silica core–shell nanostructures were investigated using solid state nuclear magnetic resonance using 19F, 13C 1H, and 29Si nuclei, X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopies.  相似文献   

20.
While pyrolysis of a polysiloxane precursor in argon typically produces a black amorphous Si–O–C ceramic containing “free” carbon (sp2 carbon), pyrolyzing the same precursor in hydrogen leads to a white amorphous ceramic with a negligible amount of sp2 carbon and a considerable hydrogen content. 29Si magic‐angle‐spinning nuclear magnetic resonance (MAS NMR) spectroscopy confirms the existence of very similar bonding environments of Si atoms in the Si–O–C network for both samples. In addition, 1H NMR spectroscopic measurements on both samples reveal that the hydrogen atoms are bonded mainly to carbon. For the thermodynamic analysis, the enthalpies of formation with respect to the most stable components (SiO2, SiC, C) of the black‐and‐white Si–O–C samples obtained after the pyrolysis at 1100°C are determined using high‐temperature oxidative drop‐solution calorimetry in a molten oxide solvent. The white ceramic is 6 kJ/g‐atom more stable in enthalpy than the black one. Although the role of hydrogen in the thermodynamic stability of the white sample remains ambiguous, the thermodynamic findings and structural analysis suggest that the existence of sp2‐bonded carbon in the amorphous network of polymer derived Si–O–C ceramics does not provide additional thermodynamic stability to the ceramic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号