首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To evaluate the efficiency of carboxymethylchitosan (CM‐chitosan)‐based hydrogels as barriers for reducing postsurgical adhesions, CM‐chitosan was synthesized to simplify the hydrogel‐making process, and the CM‐chitosan solutions were cross‐linked by using γ‐ray irradiation to create the desired hydrogels instead of using chemical cross‐linking reagents. The prepared CM‐chitosan hydrogels were characterized by a FTIR spectroscopy, swelling behavior, gel‐fraction content,and mechanical property such as gel strength of a hydrogel and the results showed a good swelling behavior and mechanical properties. Also, the radiation‐induced CM‐chitosan hydrogels significantly reduced and inhibited the postsurgical adhesions in the rat models. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Star‐shaped polycaprolactone (stPCL)/chitosan composite hydrogel was fabricated by simply melt/solution blending between chitosan/dicarboxylic acid solution and melted stPCL, using 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride and N‐hydroxysuccinimide as conjugating agents to obtain a composite hydrogel. Here, stPCL and modified stPCL were investigated. The stPCL was modified to have a carboxyl‐terminated chain (stPCL‐COOH). The composite hydrogels were transparent. The network structure of the composite hydrogels was investigated. stPCL‐OH had no chemical bond to the chitosan network but stPCL‐COOH could co‐crosslink with the chitosan network. The porous structure and porosity of the composite hydrogels were similar to those of chitosan hydrogel. However, the hydrophobicity of stPCL resulted in a lower swelling ratio compared to chitosan hydrogel. The rheological analysis of the composite hydrogel exhibited a stable crosslinked network. Compression testing of the composite hydrogel obtained from stPCL‐COOH at a mole ratio of stPCL‐COOH and chitosan of 1:1 had optimum compressive mechanical properties comparable to chitosan hydrogel due to a synergistic effect of the flexibility in stPCL and the co‐crosslinking of stPCL‐COOH with the chitosan network. © 2020 Society of Chemical Industry  相似文献   

3.
A new family of cationic hybrid hydrogels from two new positively charged aqueous soluble precursors, glycidyl methacrylate‐chitosan (GMA‐chitosan), and 2‐(acryloyloxy) ethyl trimethylammonium (AETA), was developed via a simple photocrosslinking fabrication method. These hybrid hydrogels have pendant quaternary ammonium functional groups on the AETA segments. The chemical composition of GMA‐chitosan/AETA hybrid hydrogels were characterized by Fourier transform infrared spectroscopy and their mechanical, swelling, and morphological properties were examined as a function of the composition of the hybrids as well as the effect of pH and ionic strength of the surrounding medium. GMA‐chitosan/AETA hybrid hydrogels show a porous network structure with average pore diameter 20–50 μm. The compression moduli of these hybrid hydrogels ranged from 27.24 to 28.94 kPa, which are significantly higher than a pure GMA‐chitosan (17.64 kPa). GMA‐chitosan/AETA hybrid hydrogel shows pH/ionic strength responsive swelling behavior because of the presence of the positive charge pendant groups. These hybrid hydrogels showed a sustained BSA protein release and a significantly lower initial burst release than a pure GMA‐chitosan hydrogel. The two aqueous soluble precursors and the cationic charge characteristics of the resulting GMA‐chitosan/AETA hybrid hydrogels may suggest that this new family of biomaterials may have promising applications as the pH responsive protein drug delivery vehicles. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3736–3745, 2013  相似文献   

4.
A novel full‐polysaccharide hydrogel was prepared by crosslinking of chitosan with periodate‐oxidized sucrose. A tetraaldehyde molecule is synthesized via periodate oxidation of sucrose and then applied as a crosslinking agent to form a new hydrogel network. A mechanism for the superabsorbent hydrogel formation via reductive N‐alkylation was also suggested. The structure of the hydrogel was confirmed by FTIR spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). It is shown that crosslinking of chitosan can improve its thermal stability. The effects of crosslinker concentration, pH, and inorganic salt on the swelling behavior of the hydrogel were studied. The results indicate that the hydrogel has good pH sensitivity and pH reversible response. The smart hydrogels may have potential applications in the controlled delivery of bioactive agents and for wound‐dressing application © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Tough hydrogels receive continuous attention because of their promising applications in many fields. Herein, tough hydrogels of poly (N,N‐dimethylacrylamide) (PDMAA)/alginate (SA) are prepared, with interpenetrating network (IPN) and of PDMAA/chitosan (CS) with semi‐IPN microstructure, respectively. The toughening of the hydrogel by incorporating natural polymers is studied by compressing tests and dynamic mechanical analyses. Moreover, cyclic load–unload compressing of the two types of hydrogels are performed at low strains and under relatively high strains, in order to compare their strength and anti‐fatigue properties. The results indicate that the mechanical strength can be markedly improved upon addition of the natural polymers, and the IPN hydrogel of PDMAA/SA reveals much higher mechanical performances but is less stable. However, the semi‐IPN hydrogel of PDMAA/CS displays excellent anti‐fatigue stability, but with relatively low strength. Swelling tests, scanning electron microscopy, and Fourier transform infrared spectroscopy are carried out to study the microstructures of the hydrogels, which are carefully analyzed to understand the difference in mechanical performances of those hydrogels. The results suggest that the presence of sacrificial unit and higher chain density in the IPN are helpful for toughening hydrogels, while the semi‐IPN network is beneficial to improve the energy dissipation efficiency.  相似文献   

6.
The main aim of this work is the synthesis and characterization of cross‐linked chitosan systems. Chitosan hydrogels can be prepared by physical or chemical cross‐linking of polymer chains. Chemical cross‐linking, leading to the creation of hydrogel networks possessing improved mechanical properties and chemical stability, can be achieved using either synthetic agents or natural‐based agents. In this work, the cross‐linker Genipin, a naturally derived compound, was selected because of the lower acute toxicity compared to many other commonly used synthetic cross‐linking reagents. In particular, the chemical stabilization of chitosan through genipin cross‐linking molecules was performed and characterized by calorimetric analyses (differential scanning calorimetry), swelling measurements in different pHs, and ionic strength. The reaction kinetics was carried out by means of rheological measurements, and both the activation energy (Ea) and the reaction order (m) were calculated. The hydrogel analyses were carried out at different concentrations of genipin (GN1 and GN2). The results were used to evaluate the possibility to use the chemical cross‐linked chitosan–genipin hydrogel for biomedical applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42256.  相似文献   

7.
A new biomaterial, a hydrogel, with dual-crosslinked design, has been created with enhanced mechanical performance. The hydrogels are fabricated based on water-soluble chitosan, with dual-crosslinking of imine linkages and host–guest interactions. Phenolphthalein-grafted N-carboxyethyl chitosan (CECS-g-PHP), as a guest polymer, is synthesized and structurally characterized and complexed with hexamethylenediamine modified β-cyclodextrin (β-CD-HDA), as a host molecule. Oxidized sodium alginate (OSA) is added to form crosslinking networks via imine linkages with the existing amino groups. The hydrogels show significantly shorter gelation times and higher compressive stresses, compared with single-crosslinked hydrogels. The phenolphthalein units in the hydrogel change color with pH and other added chemicals. Moreover, the hydrogels can be injected and are self-healing with >80% recovery within 4 h. Thus, these dual-crosslinked hydrogels, which respond to pH and other stimuli, are promising designs for new multifunctional biomaterials.  相似文献   

8.
Composite materials based on carbon nanotubes (CNT) and polymeric hydrogels have become the subject matter of major interest for use as carriers in drug delivery research. The aim of this study was to evaluate the in vitro cytotoxicity of the hydrogel–carbon nanotube–chitosan (hydrogel–CNT–CH) composites on intestinal cells. Oxidized CNT were wrapped with chitosan (CH), Fourier transform infrared (FT‐IR) analysis suggest that oxidized CNT interact with CH. Transmission electron microscopy (TEM) images show a CH layer lying around CNT. Chitosan wrapped CNT were incorporated to poly (acrylamide‐co‐acrylic acid) hydrogels. Swelling behavior in buffers at different pH were evaluated and revealed a significantly lower swelling when it is exposed to a acid buffer solution (pH 2.2). Mechanical properties were evaluated by measurements of elasticity and the material with CNT showed better mechanical properties. The incorporation and liberation of Egg Yolk Immunoglobulin from hydrogel–CNT–CH were also assessed and it revealed an improved performance. To evaluate the effect of these nanocomposites on cellular redox balance, intestinal cells were exposed to hydrogel–CNT–CH composites and antioxidant enzymes were assessed. Cytotoxicity and apoptosis were also evaluated. Hydrogel–CNT–CH composites induce no oxidative stress and there were no evidence of cytotoxicity or cell death. These preliminary findings suggest that hydrogel–CNT–CH composites show improved properties and good biocompatibility in vitro making these biomaterials promising systems for drug delivery purposes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41370.  相似文献   

9.
Industrial wastewaters from the Merox process are heavily polluted by toxic cobalt‐tetrasulfonated phthalocyanine (CoTsPc) dye catalyst, and in this article, we describe the synthesis of novel chitosan hydrogels and their adsorption capabilities against CoTsPc as biosorbents. In this study, novel chitosan hydrogels were crosslinked by 3,3′,4,4′‐tetracarboxybenzophenone dianhydride and used for the first time. The adsorption capacities of the hydrogels were significantly improved, and they exhibited excellent sorption behavior with ammonium sulfate modification. The adsorption behavior was observed to be pH dependent, and the optimum pH was found to be 8. Moreover, the swelling studies indicated that the hydrogels are superabsorbent. The reusability of these dye‐adsorbent hydrogels was also evaluated. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46167.  相似文献   

10.
Novel pH‐sensitive chitosan‐poly(acrylamide‐co‐itaconic acid) hydrogels were prepared by free radical copolymerization of acrylamide and itaconic acid (IA) in chitosan solution. The hydrogels were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and the swelling ratios of the hydrogels in water (pH 6.8) and pH 1.2. The influence of composition on the thermal properties of the hydrogels was assessed. The glass transition temperatures of the samples increased with IA content, ranging from 110 to 136 °C. Swelling of the hydrogels was found to obey second‐order kinetics with respect to the remnant swelling, indicating that diffusion is controlled by the relaxation of chains. The equilibrium swelling degree was strongly dependent on pH and composition. At both pH values the highest water uptake was obtained for the IA‐free sample M1. From the equilibrium swelling results the average molar mass between crosslinks, Mc, and the crosslink density of the chitosan‐poly(acrylamide‐co‐itaconic acid) samples were calculated. The results evidenced the reinforcing effect of IA on the hydrogel structure. It is concluded that these highly swellable pH‐sensitive hydrogels can be useful for applications in biomedicine and pharmacy. © 2013 Society of Chemical Industry  相似文献   

11.
Chitosan hydrogels were prepared from water soluble chitosan derivatives (chitosan‐MA‐LA, CML) by photoinitiating polymerization under the existence of Irgacure2959 and the irradiation of UV light. The CML was obtained by amidation of the amine groups of chitosan with lactic acid and methacrylic acid. Gelation time of the hydrogel could be adjusted within a range of 5–50 min, and controlled by factors such as the degree of MA substitution, initiator concentration, existence of oxygen, and salt. The dry hydrogel adsorbed tens to hundred times of water, forming a highly hydrated gel. The swelling ratio was smaller at the higher degree of MA substitution, higher pH, and higher salt concentration. Rheological test showed that the hydrogel is elastomeric in the measuring frequency range, with a storage modulus and loss modulus of 0.8–7 kPa and 10–100 Pa, respectively. In vitro culture of chondrocytes demonstrated that the cells could normally proliferate in the extractant of the hydrogels, showing no cytotoxicity at lower initiator concentration. By contrast, the extractant of the hydrogel made by the redox initiating system, i.e., ammonium persulfate (APS) and N,N,N′,N′‐tetramethylethylenediamine (TEMED), showed apparent cytotoxicity. Thus, the chitosan hydrogels initiated by the Irgacure2959 have better comprehensive properties, in particular better biocompatibility, and are more suitable for biomedical applications. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Poly(N‐isopropylacrylamide) (PNIPAAm) has been a well‐known stimuli–responsive material and has been used in multiple novel applications. One of the key attributes to make the hydrogel more attractive is to control the response time and temperature. This work focused on comparing the physical properties, such as response time, transition temperature, heat of fusion, and mechanical strength, of macroporous and microporous PNIPAAm hydrogels, respectively. It was found that the macroporous hydrogels synthesized from a low‐temperature polymerization with addition of tetramethyl orthosilicate exhibited a faster response time and superior mechanical strength. Furthermore, to modulate the transition temperature, both the macroporous and microporous hydrogels were subjected to different qualities of media by introducing a cosolvent (methanol) or an anionic surfactant (sodium dodecyl sulfate). Interestingly, addition of a cosolvent demonstrated a more pronounced effect on the macroporous hydrogel, whereas the surfactant resulted in a more pronounced effect on the microporous hydrogel. Such results revealed that based on their porosity; there were appreciable differences when the PNIPAAm hydrogels interacted with media molecules. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42776.  相似文献   

13.
A temperature‐ and pH‐dependent hydrogel was studied with interpenetrating polymer network (IPN) hydrogels constructed with water‐insoluble chitosan and polyallylamine. Various IPNs were prepared from different weight ratios of chitosan–polyallylamine. Crosslinked‐IPN hydrogels exhibited relatively high equilibrium water content (EWC) in the range 80–83%. The EWC of IPN hydrogels depended on pH and the amount of complex, which is the content of chitosan and polyallylamine. The differential scanning calorimeter (DSC) thermogram of fully swollen IPN hydrogels appeared between 3 to 4 °C. The IPNs exhibited two glass‐transition temperatures (Tgs), indicating the presence of phase separation in the IPNs as exhibited by dielectric analysis (DEA). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 498–503, 2002  相似文献   

14.
Hydrogels have been widely used as mild biomaterials due to their bio‐affinity, high drug loading capability and controllable release profiles. However, hydrogel‐based carriers are greatly limited for the delivery of hydrophobic payloads due to the lack of hydrophobic binding sites. Herein, nano‐liposome micelles were embedded in semi‐interpenetrating poly[(N‐isopropylacrylamide)‐co‐chitosan] (PNIPAAm‐co‐CS) and poly[(N‐isopropylacrylamide)‐co‐(sodium alginate)] (PNIPAAm‐co‐SA) hydrogels which were responsive to both temperature and pH, thereby establishing tunable nanocomposite hydrogel delivery systems. Nano‐micelles formed via the self‐assembly of phospholipid could serve as the link between hydrophobic drug and hydrophilic hydrogel due to their special amphiphilic structure. The results of transmission and scanning electron microscopies and infrared spectroscopy showed that the porous hydrogels were successfully fabricated and the liposomes encapsulated with baicalein could be well contained in the network. In addition, the experimental results of response release in vitro revealed that the smart hydrogels showed different degree of sensitiveness under different pH and temperature stimuli. The results of the study demonstrate that combining PNIPAAm‐co‐SA and PNIPAAm‐co‐CS hydrogels with liposomes encapsulated with hydrophobic drugs is a feasible method for hydrophobic drug delivery and have potential application prospects in the medical field. © 2018 Society of Chemical Industry  相似文献   

15.
Lately, copper‐assisted azide–alkyne cycloaddition (CuAAC) has become a very interesting tool for synthesizing biocompatible polymer‐based materials such as hydrogels or microgels, which can be used as biomaterials for tissue engineering and drug delivery. Novel poly(2‐hydroxyethyl aspartamide)s (PHEAs) functionalized with pendent acetylene or azide groups were prepared from polysuccinimide, which is the thermal polycondensation product of aspartic acid, through successful ring‐opening reactions using propargylamine, 1‐azido‐2‐aminoethane and ethanolamine. The composition of the prepared copolymers was analyzed using 1H NMR spectroscopy. Clickable PHEA derivatives were crosslinked by mixing together in water with a catalyst system of Cu(I) and N, N, N′, N′, N″‐pentamethyldiethylenetriamine, a type of Huisgen's 1,3‐dipolar azide‐alkyne cycloaddition. The reaction of the polymers resulted in a chemoselective coupling between alkynyl and azido functional groups with multiple formation of triazole crosslinks to give hydrogels. The triazole linkages in the hydrogels are highly stable and may also play a role in swelling behavior. PHEA‐based hydrogels were also obtained by the crosslinking of azide‐ or alkyne‐modified PHEA with a small‐molecule crosslinker. The hydrogels prepared using these two methods were characterized by their degree of swelling and the morphology of the hydrogels was confirmed using scanning electron microscopy. The approach we describe here presents a promising alternative to common chemical hydrogel preparation techniques, and these hydrogels seem to possess structures having potential for a variety of industrial and biomedical applications. © 2012 Society of Chemical Industry  相似文献   

16.
The creation of biocompatible composite hydrogels from renewable biopolymers with stabilized functional platinum nanoparticles seems to be an important scientific task. The formation of such hydrogels in a unique medium of carbonic acid under high pressure CO2 is promising due to its sterilizing ability under pressure, biocompatibility after decompression and environmental friendliness. In the present work, stable chitosan hydrogels with platinum nanoparticles were obtained in such solutions. The hydrogel nature of the composites was confirmed by rotational rheology. The physicochemical characteristics were studied using Fourier transform infrared, X-ray photoelectron, ultraviolet–visible spectroscopies, transmission electron, scanning electron and atomic force microscopies. It was found that nanoparticles of oxidized Pt of approximately 4.5 nm in size are stabilized by chitosan in the composite. The resulting chitosan/Pt hydrogels were also tested for antimicrobial activity and shown strong activity against Gram-positive bacteria (B. subtilis and B. coagulans) and slight activity against E. coli.  相似文献   

17.
Articular cartilage has poor ability to heal once damaged. Tissue engineering with scaffolds of polymer hydrogels is promising for cartilage regeneration and repair. Polymer hydrogels composed of highly hydrated crosslinked networks mimic the collagen networks of the cartilage extracellular matrix and thus are employed as inserts at cartilage defects not only to temporarily relieve the pain but also to support chondrocyte proliferation and neocartilage regeneration. The biocompatibility, biofunctionality, mechanical properties, and degradation of the polymer hydrogels are the most important parameters for hydrogel‐based cartilage tissue engineering. Degradable biopolymers with natural origin have been widely used as biomaterials for tissue engineering because of their outstanding biocompatibility, low immunological response, low cytotoxicity, and excellent capability to promote cell adhesion, proliferation, and regeneration of new tissues. This review covers several important natural proteins (collagen, gelatin, fibroin, and fibrin) and polysaccharides (chitosan, hyaluronan, alginate and agarose) widely used as hydrogels for articular cartilage tissue engineering. The mechanical properties, structures, modification, and structure–performance relationship of these hydrogels are discussed since the chemical structures and physical properties dictate the in vivo performance and applications of polymer hydrogels for articular cartilage regeneration and repair. © 2012 Society of Chemical Industry  相似文献   

18.
To reach sustained drug release, a new composite drug‐delivery system consisting of poly(d,l ‐lactide‐co‐glycolide) (PLGA) nanoparticles (NPs) embedded in thermosensitive poly(N‐isopropyl acrylamide) (PNIPAAm) hydrogels was developed. The PNIPAAm hydrogels were synthesized by free‐radical polymerization and were crosslinked with poly(ethylene glycol) diacrylate, and the PLGA NPs were prepared by a water‐in‐oil‐in‐water double‐emulsion solvent‐evaporation method. The release behavior of the composite hydrogels loaded with albumin–fluorescein isothiocyanate conjugate was studied and compared with that of the drug‐loaded neat hydrogel and PLGA NPs. The results indicate that we could best control the release rate of the drug by loading it to the PLGA NPs and then embedding the whole system in the PNIPAAm hydrogels. The developed composite hydrogel systems showed near zero‐order drug‐release kinetics along with a reduction or omission of initial burst release. The differential scanning calorimetry results reveal that the lower critical solution temperature of the developed composite systems remained almost unchanged (<1°C increase only). Such a characteristic indicated that the thermosensitivity of the PNIPAAm hydrogel was not distinctively affected by the addition of PLGA NPs. In conclusion, an approach was demonstrated for the successful preparation of a new hybrid hydrogel system having improved drug‐release behavior with retained thermosensitivity. The developed systems have enormous potential for many biotechnological applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40625.  相似文献   

19.
Poly(vinyl alcohol)/poly(N‐vinyl pyrrolidone) (PVP)/chitosan hydrogels were prepared by a low‐temperature treatment and subsequent 60Co γ‐ray irradiation and then were medicated with ciprofloxacin lactate (an antibiotic) and chitosan oligomer (molecular weight = 3000 g/mol). The gel content, swelling ratio, tensile strength, and crystallinity of the hydrogels were determined. The effects of the chitosan molecular weight, the low‐temperature treatment procedure, and the radiation dosage on the hydrogel properties were examined. The molecular weight of chitosan was lowered by the irradiation, but its basic polysaccharide structure was not destroyed. Repeating the low‐temperature treatment and γ‐ray irradiation caused effective physical crosslinking and chemical crosslinking, respectively, and contributed to the mechanical strength of the final hydrogels. The incorporation of PVP and chitosan resulted in a significant improvement in the equilibrium swelling ratio and elongation ratio of the prepared hydrogels. The ciprofloxacin lactate and chitosan oligomer were soaked into the hydrogels. Their in vitro release behaviors were examined, and they were found to follow diffusion‐controlled kinetics. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2453–2463, 2006  相似文献   

20.
Composite chitosan/active carbon (AC) hydrogels were elaborated by a novel route, consisting in exposing the chitosan solution to ammonia vapors. This vapor‐induced gelation method was compared with the conventional elaboration process, a direct immersion of the chitosan solution in liquid ammonia. The hydrogels were characterized to evaluate their potential application as wound‐dressings, mostly regarding their morphology, mechanical properties, swelling behavior, and sorption capacities for malodorous compounds emitted from wounds as diethylamine (DEA). The influence of elaboration route, chitosan concentration, and AC incorporation was studied. The results show that freeze‐dried hydrogels have a porous asymmetric structure dependent on the chitosan concentration and which promotes exudates drainage. The nanostructure of the parent hydrogel is semi‐crystalline and slightly dependent on the gelation conditions. It confers on hydrogel an acceptable mechanical behavior (compressive modulus up to 1.08·105 Pa). Hydrogels including AC display enhanced sorption kinetics for DEA, with sorption capacities up to 49 mg g?1. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号