首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aims to investigate how the predeposition machining processes such as magnetic grinding, turning machining, and wire electrical discharge machining can influence the surface properties including electrochemical and tribological behavior of TiCrN nanostructured coating applied on Mo40 steel substrate. A physical vapor deposition technique using cathodic arc evaporation was used to apply the coating. The crystallographic phases and the microstructure of the coating were studied by X-ray diffraction and scanning electron microscope, respectively. Rockwell-C, electrochemical impedance spectroscopy and potentiodynamic polarization, and pin-on-disk wear tests were employed to evaluate the adhesion strength, corrosion behavior, and tribological property of specimens, respectively. The electrochemical results after 24 h of exposure to 3.5 wt% NaCl solution showed that TiCrN coating pretreated with a turning process with polarization resistance of about 3525.32 Ω.cm2 had the best corrosion resistance among all specimens. This was because of the improvement of the smoothness, surface quality, and adhesion after the turning process. On the other, the friction coefficient of the grounded sample is less than that of other ones. This is probably due to its higher adhesion strength and higher surface smoothness.  相似文献   

2.
This investigation focuses on the effects of cenosphere fillers on tribological properties of carbon fiber reinforced PEEK composites. Dry sliding wear behavior of 15 wt % short carbon fiber (SCF) reinforced PEEK composites filled with 5, 10, 15, and 20 wt % cenosphere was reported in this study, pure PEEK and 15 wt % SCF reinforced PEEK composites were also prepared for comparative analysis. Friction and wear experiments were conducted on a ring-on-block apparatus under different loads (100–400 N). The experimental results showed that all the composites exhibited lower coefficient of friction and better wear resistance than the matrix resin under different load conditions. It is noted that 10 wt % of the cenosphere particles filled SCF reinforced PEEK composites show superior tribological properties when compared to the other composites in this study. The morphologies of the worn surface and the fracture surface were analyzed by scanning electron microscopy and the transfer film was observed by optical microscope to understand the dominant wear mechanisms. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47245.  相似文献   

3.
Nano‐micro hierarchical porous polyphenylene sulfide/polytetrafluoroethylene (PPS/PTFE) composites were prepared by mold‐leaching and vacuum melting process under high temperature condition. The tribological behaviors of porous PPS/PTFE composites and the synergism as a result of incorporation of both micro‐porogen (NaCl) and mesoporous TiO2 whiskers were investigated. The effects of mesoporous TiO2 whiskers and nonperforated TiO2 whiskers on the friction and wear properties of PPS/PTFE composites were comparatively studied, respectively. Results indicated that the wear rate of porous PPS/PTFE composites with 30 wt % NaCl and 7 wt % mesoporous TiO2 whiskers obtained the lowest values under the load of 100 N. Compared with pure PPS, the wear resistance of nano‐micro porous PPS/PTFE composite was enhanced by 6.45 × 103 times, showing outstanding wear resistance. During sliding condition, grease could be squeezed through the nano‐micro pores under the coupling effect of load and friction heat, and formed a lubricanting layer on friction surface, providing self‐lubricating effect and high wear resistance. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
Acrylic/nano‐silica composite latexes were prepared by blending via high shear stirring (SS) or ball milling (BM) and in situ polymerization (IS). For comparison, composites filled with micro‐silica were also prepared. The mechanical and optical properties of the polymers formed by the composite latex filled with nano‐ or micro‐silica were investigated using an Instron testing machine, by dynamic mechanical analysis, ultraviolet–visible spectrophotometry and transmission electron micrography. The results showed that SS and BM methods could obtain better nanocomposite latex and polymers than the IS method, characterized by better dispersion of nanoparticles, higher tensile strength and Tg for SS and BM than for IS. The increase in absorbance and reduction in transmittance of UV (290–400 nm wavelength) were observed as nano‐silica content increased, whereas the UV absorbance or transmittance basically were kept unchanged for the composites filled with micro‐silica. © 2002 Society of Chemical Industry  相似文献   

5.
An investigation into the effect of isothermal aging on the development of transverse cracks in cross-ply laminates of two high temperature composite systems was performed. The composite materials investigated were BASF X5260/640–800 and DuPont Avimid K/IM6. Changes in the glass transition temperature, composite weight loss, crack density, and mode I intralaminar fracture toughness were monitored during isothermal aging in air at 177°C for up to 2232 h. The two laminate configurations used in this study include two variations of the generic cross-ply configuration [02/90n]s, in which n equals 1 and 2. The results of this investigation show that a layer of degraded material forms at the surface of the X5260/640–800 bismaleimide laminates and that the thickness of the degraded layer increases with aging time. After 744 h of aging, transverse cracks form in the surface plies and an increasing crack density evolves as aging time is increased; however, transverse cracks do not form in the inner 90° ply groups with aging during the time period investigated. The Avimid K/IM6 thermoplastic polyimide laminates, which show evidence of cracking prior to aging, do not exhibit any significant change in crack density with aging. The results of the aging experiments also show that the bismaleimide system exhibits a weight loss of 1.5% and an increase in glass transition temperature from 250°C to 300°C after 2232 h of aging at 177°C, while the thermoplastic polyimide system shows a weight loss of only 0.05% and an increase in glass transition temperature from 280 to 285°C after 2232 h. Changes in the resistance to crack formation are also seen in these materials during aging. The mode I intralaminar fracture toughness, a measure of resistance to transverse crack formation, shows a 50% decrease after aging for 2232 h for the bismaleimide system, while the behavior exhibited by the thermoplastic polyimide shows little evidence of a reduction.  相似文献   

6.
Short basalt fiber (BF) reinforced polyimide (PI) composites were fabricated by means of compression‐molding technique. The friction and wear properties of the resulting composites sliding against GCr15 steel were investigated on a model ring‐on‐block test rig under dry sliding conditions. The morphologies of the worn surfaces and the transfer films that formed on the counterpart steel rings were analyzed by means of scanning electron microscopy. The influence of the short BF content, load, and sliding speed on the tribological behavior of the PI composites was examined. Experimental results revealed that the low incorporation of BFs could improve the tribological behavior of the PI composites remarkably. The friction coefficient and wear rate decreased with increases in the sliding speed and load, respectively. The transfer film that formed on the counterpart surface during the friction process made contributions to reducing the friction coefficient and wear rate of the BF‐reinforced PI composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Tribological properties of blends of melamine‐formaldehyde resin (MFR) with low density polyethylene (LDPE) containing 1, 5, 10, 20, 25 wt% MFR were investigated. We have determined sliding wear by multiple scratching along the same groove using a micro scratch tester. Instantaneous penetration depth is lowered by the MFR addition to LDPE. However, there is less viscoelastic recovery and the residual (healing) depths increase with increasing MFR concentration. Microindentation hardness increases along with the MFR content. Since MFR is only partially miscible with LDPE, MFR‐rich islands in the PE matrix offer more interfaces and so increase hardness. Friction determined with a pin‐on‐disk tribometer using silicon nitride balls as a function of MFR concentration shows a minimum. The result is explained in terms of surface morphology seen in scanning electron microscopy. At the same time, all blend friction values are lower than for neat LDPE. Wear determined in the pin‐on‐disk tribometer decreases along with the MFR concentration increase. Thus, pin‐on‐disk wear and friction show different faces of blends tribology. Blending can be used to improve tribological properties of LDPE. POLYM. ENG. SCI., 2008. © 2007 Society of Plastics Engineers  相似文献   

8.
The effect of ultraviolet (UV) radiation on the structure and performance of hydrogenated nitrile butadiene rubber (HNBR) was studied in this paper. The HNBR was exposed to UV radiation for various durations (0, 7, 14, 21 and 28 days). The Fourier transform infrared spectroscopy (FTIR) results demonstrated that the surface molecular structures were oxidized to generate oxygenated species under UV radiation. The oxidative degree enhanced with the increase of aging time, resulting in thicker and denser cracks on the surface. The plausible aging mechanism of HNBR was suggested. The free volume of HNBR before and after UV aging was characterized by positron annihilation lifetime spectroscopy (PALS) and their cross-linking density, compression set, mechanical and gas permeability properties were also analyzed. In the first 14 days of UV irradiation, the dominant chain-scission reaction led to a decrease in cross-linking density of HNBR, resulting in the enhancement of free volume and thereby the increase of gas permeability. When the aging time was longer than 14 days, cross-linking reaction played a leading role and the free volume decreased, thus causing the reduction of gas permeability. As the aging time increased, the glass transition temperature (Tg), tensile strength and storage modulus of HNBR initially reduced and then increased, which was in agreement with the changing trend of cross-linking density.  相似文献   

9.
The properties of photopolymer printing plates subjected to artificial aging processes were investigated with differential scanning calorimetry and microscopic analysis. The results showed that exposure to extended ultraviolet radiation type C in the prepress process caused changes both in the thermal properties and in the structure of the outermost surface layer. Long exposure to ultraviolet radiation type A in a weathering tester led to structural changes at a deeper level and a simultaneous increase in the glass‐transition temperatures of the polymeric material. Spectroscopic analysis showed that extensive oxidation occurred in the outermost surface layer. This study provides insight into important aging processes of the photopolymer printing plates. The knowledge can be used to predict the lifetime of printing plates and to understand the effects of their aging on print quality. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Aimed to study the effects of reinforcing or functional fillers on mechanical and tribological properties of PTFE‐based friction materials of ultrasonic motor, carbon fibers reinforced PTFE composites modified with different functional fillers with differences in dimension, size, and hardness are fabricated. The tribological performances of PTFE‐based friction materials are comparatively investigated under different sliding velocities and normal loads on different surface morphologies, respectively. The experimental results reveal that nano‐SiO2 shows excellent performance in improving friction stabilities and wear resistance in different operating conditions. It is believed the silica‐based tribofilms, higher deformation resistance, and bearing capacity play a key role in improving friction stabilities. Furthermore, the results also show that the surface topography plays an important role in wear properties. The lower wear rate (sliding against with the disordered surface) is believed to be attributed to wear debris easy‐store characteristic of the topography, which promotes transfer films formation and decreases the wear rate effectively. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44835.  相似文献   

11.
In this work, perfluoroalkylmethacrylate ester (PFAMAE)‐grafted‐linear low‐density polyethylene (LLDPE) was synthesized by UV‐induced surface graft polymerization. The effect of PFAMAE‐grafted‐LLDPE on the tribological behavior of LLDPE‐filled polyoxymethylene (POM) composite was investigated using a friction and abrasion testing machine. The results showed that LLDPE‐g‐PFAMAE was a more effective modifier in improving tribological property of LLDPE‐filled POM composite than conventional maleic anhydride‐grafted‐polyethylene (PE‐g‐MAH). POM/LLDPE composite possessed much lower friction coefficient but higher wear rate than pristine POM. The incorporation of LLDPE‐g‐PFAMAE into POM/LLDPE further decreased the friction coefficient, which was 45% lower than that of POM. The wear rate of POM/LLDPE/LLDPE‐g‐PFAMAE composite was also reduced and was lower than that of pristine POM. The primary wear mechanisms of POM/LLDPE composite with and without LLDPE‐g‐PFAMAE were adhesive and abrasive wear. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

12.
In this work, an experimental study was performed to investigate the shearing mechanical properties of short basalt fiber‐reinforced polymer composite materials (SBFRP), and an optimized test method was developed. The following findings were obtained: (1) The optimized V‐notched rail shear device and test method are reliable and valid, enabling the effective shear testing of samples similar to those tested in this study in the future. (2) The shearing failure cracks of SBFRPs can be classified into three types, namely, main cracks, coupling cracks, and micro‐cracks. The micro‐cracks, which originate from micro‐slippage at the interfaces between the short fibers and the epoxy resin, initiate prior to the main cracks. (3) The existence of a critical value of the fiber volume fraction is proposed, above which a sample possesses a nonlinear deformation capacity by virtue of the initial micro‐slippage at the fiber/matrix interfaces. Furthermore, a higher fiber volume fraction gives rise to a stronger nonlinear deformation capacity. (4) The shearing mechanical properties and other basic material attributes of SBFRPs with a fiber length of 3 mm are presented, thereby establishing a foundation for the theoretical study, finite‐element analysis, and application and dissemination of SBFRPs. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46078.  相似文献   

13.
The melt‐mixing polyamide 66 (PA66) composite samples that incorporated pure, acid‐ and amine‐functionalized multiwalled carbon nanotubes (MWCNTs) were prepared in order to enhance mechanical and frictional properties of PA66 composites. The homogeneous dispersion of amine‐functionalized MWCNTs (D‐MWCNTs) in PA66 matrix was observed from the significantly uniform morphology of tensile fractured surface of the composites. Differential scanning calorimetry measurement indicates that D‐MWCNTs acted as effective nucleation agent for PA66 matrix and the crystallinity of PA66 was increased. The fracture stress and tensile modulus of the composites were significantly improved with the incorporation of D‐MWCNTs, owing to the good dispersion of D‐MWCNTs. Compared with PA66, the PA66 composites with 1.0 wt% D‐MWCNTs were improved considerably in both wear and friction properties owing to the change of the tribological mechanisms. The good dispersion of D‐MWCNTs in PA66 and good interface compatibility between D‐MWCNTs and PA66 favored the formation of a thin layer on the contact surfaces during wear and friction test, which played an important role in reducing wear and friction of the composite and in suppressing the transverse cracks. These results prove the importance of D‐MWCNTs in a positive change of the mechanical and frictional properties of PA66 composites and suggest the applicability prospect of PA66/D‐MWCNTs composites in engineering components.POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

14.
Polytetrafluoroethylene (PTFE)‐based composites filled with various inorganic fillers in a volume fraction of 30% were prepared. The tribological behavior of the PTFE composites sliding against AISI52100 steel under dry and liquid paraffin‐lubricated conditions was investigated on an MHK‐500 model ring‐on‐block test rig. The morphologies of worn surfaces and wear debris were observed with a scanning electron microscope (SEM) and an optical microscope. As the results, different fillers show different effects on the tribological behavior of the PTFE composites, while the composite shows much different tribological behavior under lubricated conditions as compared with dry sliding. The tribological behavior of the PTFE composites under dry sliding is greatly related to the uniformity and thickness of the transfer films. Only the PTFE composites with a transfer film of good uniformity and proper thickness may have excellent tribological behavior. The PTFE composites show much better tribological behavior under lubrication of liquid paraffin than under dry sliding, namely, the friction coefficients are decreased by 1 order of magnitude and the wear rate by 1–3 orders of magnitude. Observation of the worn composite surfaces with SEM indicates that fatigue cracks were generated under lubrication of liquid paraffin, owing to the absorption and osmosis of liquid paraffin into the microdefects of the PTFE composites. The creation and development of the fatigue cracks led to fatigue wear of the PTFE composites. This would reduce the mechanical strength and load‐supporting capacity of the PTFE composites. Therefore, the tribological behavior of the PTFE composites under lubrication of liquid paraffin is greatly dependent on the compatibility between the PTFE matrix and the inorganic fillers. In other words, the better is the compatibility between PTFE and fillers the better is the tribological behavior of the composites. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1891–1897, 2001  相似文献   

15.
The blends of polyamide (PA) and ultra high molecular weight polyethylene (UHMWPE) were prepared by a Brabender DSE25 co‐twin screw extruder, and maleic anhydride (MAH) grafted high‐density polyethylene (HDPE) was used as a compatibilizer. A chemical reaction between MAH group of MAH‐g‐HDPE and terminal amino group of PA was testified by FT‐IR analysis. Mechanical and tribological tests showed that the tensile and bending strength of PA decrease with the increase of UHMWPE. Besides, the mechanical strengths of PA/UHMWPE blends were improved by adding appropriate MAH‐g‐HDPE. The chemical reaction between MAH‐g‐HDPE and PA ameliorated the homogeneous dispersing ability of UHMWPE in the blend. The friction coefficient and volume wear rate of the PA/UHMWPE blends decreased apparently with the increase of UHMWPE, as was probably that UHMWPE has straight chain structure and good flexibility; therefore, a transferring film could be easily formed on the steel surface with the increase of UHMWPE. In friction process, the wear resistance of the blends was relative to the mechanical property of the blends when the amount of the transferring layer reached to a certain value. POLYM. ENG. SCI., 47:738–744, 2007. © 2007 Society of Plastics Engineers.  相似文献   

16.
This study analyzes the mechanical properties and tribological behaviors of polycarbonate (PC) reinforced with 20% short glass fiber (SGF) and 6% polytetrafluoroethylene (PTFE), which is applied to the bottom cover of the card reader body. The specimens were prepared under different injection-molding conditions, by varying the filling time, the melt temperature, the mold temperature and the packing pressure. Grey relational analysis is then applied to obtain an optimal parameter setting. Plans of experiments via nine experimental runs are based on the orthogonal arrays to determine the optimum factor level condition. The mechanical properties of ultimate stress, and the tribological behaviors of surface roughness and friction coefficient variation are adopted as the quality targets. The tensile test were performed with a 25 kN computerized MTS. Simultaneously, friction and wear tests were performed with a Schwingum Reibung Verschleiss (SRV oscillation friction wear) ball-on-plane tester. Additionally, the worn surfaces were examined with scanning electron microscopy (SEM). Melt temperature was found to be the most influenced factor inultimate stress, surface roughness, and friction coefficient for the injection molding process in this study.  相似文献   

17.
To improve the friction and wear behavior of the polyurethane composites, carbon fibers were modified with 2, 4‐diisocyanatotoluene. The mechanical and tribological properties of the reinforced polyurethane composites were studied. Tensile strength of the composites increased with the addition of carbon fibers. The friction and wear experiments were tested on a MRH‐3 model ring‐on‐block test rig at different sliding speeds and loads under dry sliding. Experimental results revealed that carbon fibers with chemical treatment contributed to largely improve the tribological properties of the polyurethane composites. Scanning electron microscopic (SEM) investigations showed that the worn surface of the modified polyurethane composite was smoother than pure polyurethane under given load and sliding speed. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
吕凯  葛方青  陈坤林  王潮霞 《精细化工》2019,36(1):19-24,30
以羟基氟硅油、季戊四醇三丙烯酸酯(PETA)为原料,制备了含双键的聚氨酯,在整理液中添加紫外线吸收剂(UVA400)和纳米二氧化硅颗粒,以提高涂层的紫外线防护效果和表面粗糙度,通过紫外光引发双键自由基聚合构筑防紫外超疏水织物涂层,并对材料进行了FTIR、SEM、疏水性及紫外线防护性能测试。结果表明:羟基氟硅油和PETA引入到了聚氨酯分子链中;织物表面具有微纳米状凸起,形成了粗糙的表面涂层。当整理液固体组分中w(SiO2)=15%,w(UVA400)=1.5%时,涂层织物的接触角为154?,滚动角为9?,紫外线防护系数(UPF)为72,紫外线A(UV-A)波段的透过率为2.96%,具有超疏水和紫外线防护性能;涂层织物经120h加速老化实验后,接触角为155?,UPF为117,UV-A波段的透过率为2.68%,具有良好的耐久性。  相似文献   

19.
In order to further improve the tribological performance of glass fiber reinforced epoxy (GF/EP) composites, highly flexible, binder‐free, molybdenum trioxide MoO3 nanobelt/graphene oxide (GO) film (f‐MoO3‐GO) is prepared by a hydrothermal method. Herein, f‐MoO3‐GO is adopted to modify GF/EP composites prepared through the vacuum‐assisted resin transfer molding method. The neat GF/EP and MoO3‐GO modified GF/EP composites are also fabricated for comparison. The tribological performance is performed using a ball‐on‐disc (“steel‐on‐polymer”) configuration under a dry sliding condition. The coefficient of friction is reduced from 0.61 for neat GF/EP composites down to 0.23 for f‐MoO3‐GO modified GF/EP (f‐MoO3‐GO/GF/EP) composites and the anti‐wear performance is improved by more than four times. The worn surface morphological observation for the composite samples is used to explain the possible wear micro‐mechanisms. The wear reducing effect of the f‐MoO3‐GO/GF/EP composites can be assigned to the increased self‐lubricating effect of f‐MoO3‐GO. With the combined advantageous properties of the used individual components, these unique composites can be used for many other applications.  相似文献   

20.
The low-energy tribological behavior was investigated in carbon/carbon composites fabricated by processing with different densification parameters. In the densification process, different impregnating precursors and carbonization temperatures were used to investigate the influence on physical and mechanical properties, microstructure and tribological behavior. Experimental results indicate that the density and hardness of resin-based specimens are higher than those of pitch-based specimens after four densification cycles. When increasing carbonization temperature in the specimens based on coal tar pitch, the open porosity increases whereas both the bulk density and the hardness decrease. When comparing the tribological properties of the specimens with different impregnating precursors, coal tar pitch specimens show lower and more stable friction coefficients and exhibit lower weight losses. This is because the pitch matrix is transferred to the preferred orientation structure carbon after carbonization. The different carbonization temperatures do influence the tribological properties; specimens carbonized at 700 °C exhibit the lowest weight loss and the most stable friction coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号