首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The graft copolymerization of methyl acrylate onto poly(vinyl alcohol) (PVA) with a potassium diperiodatonickelate(IV) [Ni(IV)]–PVA redox system as an initiator was investigated in an alkaline medium. The grafting parameters were determined as functions of the temperature and the concentrations of the monomer and initiator. The structures of the graft copolymers were confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. The Ni(IV)–PVA system was found to be an efficient redox initiator for this graft copolymerization. A single‐electron‐transfer mechanism was proposed for the formation of radicals and the initiation. Other acrylate monomers, such as methyl methacrylate, ethyl acrylate, n‐butyl acrylate, and n‐butyl methacrylate, were used as reductants for graft copolymerization. These reactions definitely occurred to some degree. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 529–534, 2003  相似文献   

2.
The graft copolymerization of methyl methacrylate and ethyl methacrylate monomers onto jute fiber was carried out in an aqueous medium with potassium persulfate as an initiator under the catalytic influence of ferrous sulfate in the presence of air. The effects of parameter variables, such as the monomer, initiator, and catalyst concentrations, the reaction time, and the temperature, on grafting and the effect of grafting the monomers onto jute constituents were studied. The degree of grafting depended on the kinds of monomers and the parameter variables. The maximum graft yield percentages with methyl methacrylate and ethyl methacrylate under optimized conditions were 18.9 and 38.8%, respectively, and the grafting onto jute fiber was largely affected by one of its main constituents, such as hemicellulose. The graft copolymers were characterized, and their improved properties were also examined. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2369–2375, 2007  相似文献   

3.
The graft copolymerization of methyl acrylate onto poly(vinyl alcohol) (PVA) using potassium diperiodatoargentate(III) [Ag(III)]–PVA redox system as initiator was studied in an alkaline medium. Some structural features and properties of the graft copolymer were confirmed by Fourier‐transfer infrared spectroscopy, scanning electron microscope, X‐ray diffraction and thermogravimetric analysis. The grafting parameters were determined as a function of concentrations of monomer, initiator, macromolecular backbone (X?n = 1750, M? = 80 000 g mol?1), reaction temperature and reaction time. A mechanism based on two single‐electron transfer steps is proposed to explain the formation of radicals and the initiation profile. Other acrylate monomers, such as methyl methacrylate, ethyl acrylate and n‐butyl acrylate, were also used to produce graft copolymerizations. It has been confirmed that grafting occurred to some degree. Thermogravimetric analysis was performed in a study of the moisture resistance of the graft copolymer. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
Studies were carried out on grafting of various vinyl monomers to nitrocellulose by ceric ions. It was observed that graft copolymerization occurred only with methyl methacrylate (MMA) and methyl acrylate monomer. The variables such as initiator concentration, monomer concentration, time of grafting, and nitrocellulose content on grafting of MMA are discussed. By hydrolyzing away the nitrocellulose backbone, the grafted poly(methyl methacrylate) branches were isolated and the >c?o peak at 1740 cm?1 in the infrared spectra of these isolated branches gave definite evidence of grafting. The molecular weight of isolated branches has been determined by viscometry. The probable mechanism of grafting may be at the α-carbon atom of primary alcohol or at a C2-C3 glycol group of the anhydro glucose unit or at the hemiacetal group of the end unit of nitrocellulose, as nitrocellulose is formed by the partial nitration of cotton cellulose.  相似文献   

5.
黄原胶与丙烯酰胺接枝共聚反应的研究   总被引:1,自引:0,他引:1  
李仲谨  王磊  程磊 《应用化工》2007,36(12):1162-1165
以过硫酸铵为引发剂,在氮气保护下,研究了黄原胶与丙烯酰胺的接枝共聚反应。考察了单体浓度、引发剂浓度、反应温度和反应时间等因素对接枝率及接枝效率的影响,探讨了过硫酸铵引发黄原胶接枝丙烯酰胺共聚反应的基本规律。采用红外光谱、X射线粉末衍射对接枝共聚物的结构进行研究,用热重分析法表征了产物的热性能,并初步探讨了接枝机理。结果表明,过硫酸铵能有效地引发黄原胶与丙烯酰胺的接枝共聚反应,并且接枝率和接枝效率随单体浓度、引发剂浓度、反应温度的变化出现极大值,随反应时间的延长不断上升,直至基本不变。  相似文献   

6.
明胶接枝共聚的进展   总被引:1,自引:0,他引:1  
本文是关于明胶接枝共聚问题近年来进展情况的评述,指出了用乙烯基单体对明胶进行接枝改性的目的和意义。简要介绍了反应介质、原料明胶、单体、引发剂,以及接枝率等有关接枝反应的一般问题。分别讨论了明胶浓度、单体浓度、引发剂浓度、反应温度及时问等变量对接枝反应的影响。介绍了明胶接枝产物的分析鉴定方法。列举了可能的接枝反应机理。此外,还指出了当前在明胶接枝共聚的研究工作中尚未解决和需要进一步研究的问题。  相似文献   

7.
杨连利  刘勇 《化工中间体》2008,(1):12-14,17
以过硫酸钾为引发剂,在氮气保护下,研究了黄原胶(XG)与丙烯酸(AA)的接枝共聚反应。考察了单体浓度、引发剂浓度、反应温度和反应时间等因素对接枝率及接枝效率的影响,探讨了过硫酸钾引发黄原胶接枝丙烯酸共聚反应的基本规律。采用红外光谱(FT—IR)对接枝共聚物的结构进行研究,并初步探讨了接枝机理。  相似文献   

8.
Vapor phase photografting of monomer mixtures on low-density polyethylene film, on which benzoyl peroxide is coated, was investigated at 60°C using various vinyl, allyl, and solid monomers. Styrene (St) itself was difficult to graft on the film substrate, but the combinations of St with vinyl monomers such as acrylonitrile (AN), glycidyl methacrylate (GMA), acrylic acid, and methacrylic acid led to the accelerated grafting, affording a maximum percent grafting at an certain monomer ratio. The same combination effect was observed for AN–N-vinyl pyrrolidone and –GMA monomer mixtures. The monomer combinations such as allyl aldehyde–St and allyl alcohol–maleic anhydride were useful for performing the grafting of allyl monomers effectively. Maleic anhydride and maleimide as solid monomers were also possible to introduce into the film substrate by means of the monomer combination, where St, N-vinyl pyrrolidone, vinyl ethers, and benzyl methacrylate were available as comonomers. Thus, the monomer combinations affording an accelerating effect on grafting may be monomer pairs rich in an alternative copolymerizability, suggesting that monomer reactivity ratio controls a major factor for the combination effect. It was confirmed from IR study on grafted films that both monomer components are introduced in the film substrate as the grafted chain component.  相似文献   

9.
淀粉与乙烯基单体的接枝共聚改性   总被引:7,自引:0,他引:7  
评述了丙烯腈、丙烯酰胺、丙烯酸、丙烯酸酯类及苯乙烯等几种较常见的乙烯基单体与淀粉的接枝共聚反应,重点讨论了淀粉糊化、引发剂和单体的浓度、种类及配比、反应温度、时间等因素对接枝共聚反应的影响,同时介绍了淀粉与乙烯基单体接枝共聚物的应用。  相似文献   

10.
Graft copolymerization onto silk (Bombyx mori) was carried out with vinyl monomers (methyl methacrylate and acrylamide) and initiated by a semiconductor‐based photocatalyst (cadmium sulfide). The utility of a semiconductor as an initiator in free‐radical photografting and the effects of ethylene glycol and triethylamine with cadmium sulfide on graft copolymerization were explored. Depending on the reaction conditions, 10–48% grafting with methyl methacrylate and 4–26% grafting with acrylamide were achieved. The reaction conditions were optimized, and the grafted fibers were characterized with scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetry analysis, and tensile strength measurements. The chemical resistance and water absorption of the grafted fibers were compared with those ungrafted fibers. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

11.
The graft copolymerization of n‐butyl methacrylate monomer onto compounded poly(vinyl chloride) was carried out by melt‐mixing process in a Brabender plasticorder (BPCR) using a free‐radical initiator. The reaction conditions such as initiator and monomer concentration, shear rate (rpm), residence time, and temperature were optimized in the mixing head of BPCR attached to a torque rheometer. The graft copolymers were Soxhlet extracted with cyclohexane and were characterized by intrinsic viscosity, FTIR, and 13C‐NMR spectroscopy. A maximum of 14% grafting was obtained. The graft copolymer showed significant improvement in processibility and both thermal and mechanical properties. Scale‐up studies of the optimized recipe were carried out in a single‐screw extruder for commercial trials/evaluation. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2442–2449, 2004  相似文献   

12.
The contribution of jute constituents, namely, water soluble matters, waxes, pectins, lignin, hemicelluloses, and α-cellulose in the graft copolymerization reaction of jute fabric with some vinyl monomers was investigated. Styrene, methylmethacrylate, and acrylonitrile were used as the monomers and Fe2+/H2O2 redox system as initiator. The graft copolymerization reaction was carried out at 80°C using different concentrations of monomer and initiator for different lengths of time. The water soluble matters, pectins, and lignin were found to accelerate the graft copolymerization reaction during the initial stages of the reaction and in the meantime impede termination during the latter stages of the reaction. Generally, the magnitude of grafting is governed by nature of the substrate, nature of the monomer, and the conditions of the polymerization reaction. Grafting decreases the moisture regain of jute and substrates derived thereof irrespective of the monomer used within the range studied. Also, grafting decreases the tensile strength and imparts rot-proofing properties to the substrates examined.  相似文献   

13.
There has been little research on poly(alkylene terephthalate) modification by graft copolymerization with vinyl monomers. There is no reported information on graft polymerization in the molten state. In this study, nadic anhydride was grafted onto poly(butylene terephthalate) and poly(trimethylene terephthalate) with a free‐radical initiator in an internal mixer. The influence of the monomer and initiator concentrations on the degree of grafting was investigated. The degradation of these polymers was investigated and characterized with their complex melt viscosity. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1839–1845, 2003  相似文献   

14.
A novel redox system, potassium diperiodatocuprate [Cu (III)–chitosan], was employed to initiate the graft copolymerization of methyl acrylate (MA) onto chitosan in alkali aqueous solution. The effects of reaction variables such as monomer concentration, initiator concentration, pH and temperature were investigated. By means of a series of copolymerization reactions, the grafting conditions were optimized. Cu (III)–chitosan system was found to be an efficient redox initiator for this graft copolymerization. The structures and the thermal stability of chitosan and chitosan‐g‐poly(methyl acrylate) (PMA) were characterized by infrared spectroscopy (IR) and thermogravimetric analysis (TGA). In this article, a mechanism is proposed to explain the formation of radicals and the initiation. Finally, the graft copolymer was used as the compatibilizer in blends of poly(vinyl chloride) (PVC) and chitosan. The scanning electron microscope (SEM) photographs and differential scanning calorimetry (DSC) thermograms indicate that the graft copolymer improved the compatibility of the blend. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2283–2289, 2003  相似文献   

15.
The graft copolymerization of the vinyl monomers that were prepared by reactions of methyl acrylate and 4‐aminoazobenzene derivatives, such as 4‐aminoazobenzene, 4‐amino‐4′‐methyl azobenzene, 4‐amino‐4′‐nitro azobenzene, and 4‐amino‐3′,5′‐dinitro azobenzene, onto potato starch were carried out by the initiation of potassium persulfate. The evidence of grafted copolymers was investigated by using FTIR spectroscopy and acid hydrolysis technique. The relationship between grafting efficiency and monomer structure as well as polarity was studied. The experimental results showed that the graft copolymerization is independent of the polarity of the vinyl monomers and that the structures of monomers exhibit a marked influence on the graft copolymerization, namely, the larger the substitute is, the lower the grafting efficiency will be. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 896–899, 2002  相似文献   

16.
Graft copolymerization of acceptor monomers methyl acrylate and ethyl acrylate onto Himachali wool fiber has been studied in aqueous medium by using vanadium oxyacetyl acetonate as initiator at 40, 50, 60, and 70°C. Graft copolymerization was carried out for various reaction periods and nitric acid was found to catalyse the reaction. Percentage of grafting and percent efficiency have been determined as functions of concentration of nitric acid, concentration of initiator, concentration of monomer, time, and temperature. Under optimum conditions, methyl acrylate and ethyl acrylate afforded maximum grafting to the extent of 28.4 and 18.5%, respectively. Relative reactivities of methyl acrylate and ethyl acrylate towards grafting have been compared with those of methyl methacrylate, acrylic acid and vinyl acetate reported earlier from this laboratory. Different vinyl monomers showed the following reactivity order: MMA > MA > EA > AAc > VAc. Several grafting experiments were carried out in the presence of various additives which included tert-butylhydroperoxide (TBHP), dimethylsulfoxide, pyridine, and dimethylformamide. Only TBHP was found to enhance grafting to a considerable extent, other additives decrease percent grafting of both methyl acrylate and ethyl acrylate.  相似文献   

17.
The method of graft copolymerization of methyl methacrylate on halogen-containing polymer has been utilized for grafting of methyl methacrylate–methacrylic acid monomer pair onto poly(vinyl chloride) and chlorinated rubber. Substantial grafting could be obtained by using the method reported earlier. However, the compositions of the grafted chains are found to deviate appreciably from the compositions calculated from r1 and r2 values reported in literature. The reactivity ratios for this pair of monomers have been therefore evaluated using azobisisobutyronitrile and n-butane thiol–dimethyl sulfoxide as initiators. The anomalies of the grafted chain compositions have been discussed and an explanation presented on preferential solvation.  相似文献   

18.
The graft copolymerization of methyl methacrylate upon gelatin was studied using benzoyl peroxide as an organic initiator in aqueous medium. The grafting reactions were carried out within the 65–90°C temperature range, and the effect of monomer and initiator concentrations on the graft yield were also investigated. The maximum graft yield was obtained at a benzoyl peroxide concentration of 0.20 × 10−2 mol/L and the optimum temperature was 80°C. Thermogravimetric analysis showed that the thermal stability of gelatin increased as a result of grafting. Further, such changes in the properties of methyl methacrylate‐grafted gelatin as density, moisture regain, and water uptake were also determined. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1547–1556, 1999  相似文献   

19.
Dehydrochlorinated poly(vinyl chloride) (DHPVC) was graft copolymerized with styrene monomer using benzoyl peroxide (Bz2O2) as free radical initiator, in vacuum. The effect of synthesis conditions such as time, initiator concentration, the ratio of monomer to polymer, and temperature on various grafting parameters was studied. On the whole, a maximum of 47 wt % polystyrene (PSt) in the graft (DHPVC-g-PSt) was obtained. PSt contents of graft copolymers determined by gravimetry, chlorine analysis, and UV spectroscopy have been compared. A “grafting from” mechanism has been proposed for the graft copolymerization.  相似文献   

20.
Summary In order to ascertain the role of -SH groups in graft copolymerization of vinyl monomers onto Himachali wool fiber, an attempt has been made to graft copolymerize ethylacrylate (EA) onto reduced wool, in the presence of cerie sulfate (CS) as redox initiator in aqueous medium. Reduction of wool was carried out with thioglycolic acid (TGA) in aqueous solution. Percentage of grafting and percent efficiency were determined as functions of (a) Concentration of initiator (CS), (b) Concentration of monomer (EA), (c) Concentration of Sulfuric acid, (d) Time and (e) Temperature. Reduction of wool does not promote grafting of EA. The unreduced wool during ceric ion-initiated grafting of EA was reported earlier from this laboratory to produce more grafting. In ceric ion-initiated grafting of vinyl monomer onto wool, -SH groups do not play significant role. A plausible mechanism of grafting of EA onto reduced wool in the presence of ceric ion initiator has been suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号