首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Polymer Composites》2017,38(5):974-980
Polyvinyl alcohol (PVA) films containing magnetite Fe3O4 nanoparticles have been prepared by co‐precipitation method for use in gamma ray shielding and protection. Characterizations of the magnetite/PVA nanocomposite films were investigated by X‐ray diffraction (XRD), transmission electron microscopy (TEM), UV–vis spectroscopy, and magnetization measurements. TEM images showed that the synthesized magnetite particles had about 6–11 nm dimensions. Optical study's results revealed that the optical energy band gaps of thin films range between 1.82 and 2.81 eV at room temperature using UV–visible absorption spectroscopy. The saturation magnetization (MS) value measured by vibrating sample magnetometer VSM was found to be 8.1 emu/g with superparamagnetic nature. The radiation shielding properties such as linear attenuation coefficients (μ ) and half‐value thickness (HVT) for the magnetite nanocomposite films have been obtained experimentally for different photon energies. The results imply that these nanocomposites films are promising radiation shielding materials. POLYM. COMPOS., 38:974–980, 2017. © 2015 Society of Plastics Engineers  相似文献   

2.
Solid‐polymer electrolytes (SPEs) in the form of poly(vinyl alcohol) (PVA) doped with various amounts (5, 10, and 15 wt %) of lithium perchlorate trihydrate (LiClO4·3H2O) and 2 wt % cesium copper oxide (Cs2CuO2) nanoparticles were fabricated by a solvent intercalation method. The obtained nanocomposites were evaluated for their chemical structure and microstructural and morphological behaviors via Fourier transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy methods, respectively. The obtained dielectric behaviors, alternating‐current conductivity, dielectric modulus, and dielectric relaxation of the SPEs depended on the volume fraction of the electrolyte. Linear behavior of the current–voltage characteristics for all of the SPE films was observed with a slight deviation at a higher voltage. The thermal behaviors of the PVA–Cs2CuO2–LiClO4 films were evaluated by differential scanning calorimetry and thermogravimetric analysis. The refractive index, band‐gap energy, and optical dispersion were examined with UV–visible spectroscopy. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45852.  相似文献   

3.
The goal of this project is to obtain poly(vinyl alcohol) (PVA)/TiO2‐bovine serum albumin (BSA) nanocomposite (NC) films in different weight percentages of modified TiO2. For this purpose, to prevent the accumulation of nanoparticles (NPs) in the PVA matrix, the surface of the TiO2 NPs was treated with the BSA molecules. To achieve this aim, ultrasonic waves were used as an environmentally friendly and green process that decrease the time of reactions, help better spreading of TiO2 NPs and maintain dimensions of TiO2 NPs in the nanoscale range. In the end, the features of the PVA/TiO2‐BSA NC films were considered with a variety of techniques. The Fourier transform infrared spectroscopy, energy dispersive X‐ray, and X‐ray diffraction showed that the BSA was well placed on the surface of TiO2 NPs. The thermal gravimetric analysis and UV‐visible results demonstrated that all the PVA/TiO2‐BSA NC films have better thermal and optical properties than the pure PVA. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46558.  相似文献   

4.
A series of poly(vinyl alcohol)/Cloisite Na+-Tyrosine/Zinc oxide (PVA/Cloisite Na+-Tyr/ZnO) bionanocomposites were prepared by dispersing ZnO nanoparticles in solution containing mixture of the PVA and modified Cloisite Na+. Structure of nanocomposite coatings was investigated by X-ray diffraction and Fourier-transform infrared spectroscopy. The thermal stability and optical properties of bionanocomposite were characterized by thermogravimetric analysis and UV–vis spectroscopy, respectively. The introduction of ZnO nanoparticles into PVA/Cloisite Na+-Tyr mixed solutions significantly increased the thermal stability of the obtained films. The results revealed that the high UV-shielding efficiency of the composites: for a film containing 6.0 wt% of ZnO nanocrystals, over 92% of UV light at wavelengths of 368 nm was absorbed while the optical transparency in the visible region was slightly below that of a PVA/Cloisite Na+-Tyr film.  相似文献   

5.
Polyvinyl alcohol (PVA) films filled with different concentrations of CoBr2 were prepared using the casting method. These films were characterized by FTIR, UV–visible, XRD, and ESR techniques. FTIR spectra were used to clarify the structural variations due to the filling level from CoBr2. The observed bands at 3484, 1733, and 1640 cm?1 were assigned to O? H, C?O, and C?C stretching vibrations, respectively. UV–visible spectra shows the absorption band at 280 nm which is assigned to π → π* transition. This indicates the presence of unsaturated bonds in tail to head of PVA. Optical energy gap decreased with increasing the concentration of CoBr2. X‐ray diffraction scans show some decrease in the degree of crystallinity in the filled films which reveals an increase in amorphous phase of PVA due to the interaction between Co+2 and polymeric matrix causing a molecular rearrangement within the amorphous phase of PVA. The observed complex ESR spectrum due to hyperfine interactions confirms the role of free radicals. Spectroscopic and magnetic properties of PVA/CoBr2 composite films were investigated and compared with those of PVA alone. The results show that the change of the structure due to the interaction of filler with the polymer. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
In the present study, fumed silica (SiO2) nanoparticle reinforced poly(vinyl alcohol) (PVA) and poly(vinylpyrrolidone) (PVP) blend nanocomposite films were prepared via a simple solution‐blending technique. Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV–vis), X‐ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to elucidate the successful incorporation of SiO2 nanoparticles in the PVA/PVP blend matrix. A thermogravimetric analyzer was used to evaluate the thermal stability of the nanocomposites. The dielectric properties such as dielectric constant (?) and dielectric loss (tan δ) of the PVA/PVP/SiO2 nanocomposite films were evaluated in the broadband frequency range of 10?2 Hz to 20 MHz and for temperatures in the range 40–150 °C. The FTIR and UV–vis spectroscopy results implied the presence of hydrogen bonding interaction between SiO2 and the PVA/PVP blend matrix. The XRD and SEM results revealed that SiO2 nanoparticles were uniformly dispersed in the PVA/PVP blend matrix. The dielectric property analysis revealed that the dielectric constant values of the nanocomposites are higher than those of PVA/PVP blends. The maximum dielectric constant and the dielectric loss were 125 (10?2 Hz, 150 °C) and 1.1 (10?2 Hz, 70 °C), respectively, for PVA/PVP/SiO2 nanocomposites with 25 wt % SiO2 content. These results enable the preparation of dielectric nanocomposites using a facile solution‐casting method that exhibit the desirable dielectric performance for flexible organic electronics. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44427.  相似文献   

7.
Composites of nanocrystalline iron disulfide (FeS2) coated with poly(vinyl pyrrolidone) (PVP) or poly(vinyl alcohol) (PVA) have been successfully synthesized using a solvothermal process, in which PVP and PVA serve as soft templates. Transparent, flexible thin films of these nanocomposites were prepared from homogeneous solution using a solution‐casting approach. X‐ray diffraction and thermogravimetric analysis and energy‐dispersive X‐ray, Fourier transform infrared and UV‐visible absorption spectroscopic techniques were employed to study the structural and optical properties of these nanocomposite films. UV‐visible spectra in transmission mode reveal the UV‐shielding efficiency of these nanocomposite films and the films are found to be exceptionally good for UV‐shielding applications in the wavelength range 200 to 400 nm. The present work aims at developing transparent and flexible UV‐shielding materials and colour filters using cost‐effective and non‐toxic inorganic–polymer nanocomposites. © 2012 Society of Chemical Industry  相似文献   

8.
Porous hollow CeO2 microspheres were fabricated using negative-charged PS microspheres as templates by a facile method. The hollow CeO2 microspheres were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and N2 adsorption?Cdesorption. The results showed that the as-synthesized hollow CeO2 microspheres are well monodisperse and uniform in size. The porous shells of hollow microspheres are relatively rough and composed of tiny nanoparticles. The external diameter, internal diameter, and shell thickness of hollow CeO2 microspheres are about 190, 160, and 15?nm, respectively. A possible mechanism for the formation of hollow CeO2 spheres was also discussed.  相似文献   

9.
Polyacrylamide (PAM) and poly(vinyl alcohol) (PVA) were blended with different weight percentages (70/30, 50/50, 30/70) using solution-cast technique. The prepared films were studied by different characterization techniques. The effect of PVA content on PAM blends was investigated by Fourier transform infrared (FTIR), ultra violet visible (UV–vis), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). Different mechanical properties of blends were also studied. Significant changes were observed in FTIR, UV–vis, TGA, SEM and mechanical analysis which revealed interactions between the two polymers. FTIR spectra showed the presence of hydrogen bonding between PAM and PVA and hydrophilic nature of the blends. Different optical properties were studied by UV–vis spectroscopy. The weight loss, as a function of temperature of blends, was analyzed by TGA. The results obtained from different experimental techniques were supported by SEM image analysis. FTIR analysis confirmed the conclusion on the specific hydrogen bonding between –CONH2 groups in PAM and –OH group in PVA. These results showed the change in the thermal stability and mechanical properties. FTIR analysis revealed that a blend ratio of 50/50 wt% had maximum intermolecular interaction between two polymers. It was finally concluded that blend films with the above ratio display higher thermal stability and improved mechanical properties. Due to changes in interactions, the optical parameters were also changed.  相似文献   

10.
The influence of the reaction gas composition during the DC magnetron sputtering process on the structural, chemical and optical properties of Ce-oxide thin films was investigated. X-ray diffraction (XRD) studies confirmed that all thin films exhibited a polycrystalline character with cubic fluorite structure for cerium dioxide. X-ray photoelectron spectroscopy (XPS) analyses revealed that cerium is present in two oxidation states, namely as CeO2 and Ce2O3, at the surface of the films prepared at oxygen/argon flow ratios between 0% and 7%, whereas the films are completely oxidized into CeO2 as the aforementioned ratio increases beyond 14%. Various optical parameters for the thin films (including an optical band gap in the range of 2.25–3.1?eV) were derived from the UV–Vis reflectance. A significant change in the band gap was observed as oxygen/argon flow ratio was raised from 7% to 14% and this finding is consistent with the high-resolution XPS analysis of Ce 3d that reports a mixture of Ce2O3 and CeO2 in the films. Density functional theory (DFT+U) implemented in the Cambridge Serial Total Energy Package (CASTEP) was carried out to simulate the optical constants of CeO2 clusters at ground state. The computed electronic density of states (DOSs) of the optimized unit cell of CeO2 yields a band gap that agrees well with the experimentally measured optical band gap. The simulated and measured absorption coefficient (α) exhibited a similar trend and, to some extent, have similar values in the wavelength range from 100 to 2500?nm. The combined results of this study demonstrate good correlation between the theoretical and experimental findings.  相似文献   

11.
The optical, electrical, and microstructurtal properties of pure and TiO2/Poly(vinyl alcohol) (PVA) composite polymer films were carried out using FTIR, XRD, UV‐Visible, DC electrical conductivity, and Positron annihilation lifetime spectroscopy (PALS) techniques. The FTIR study reveals that the Ti+ ions of TiO2 interacts with the OH groups of PVA via intra/inter molecular hydrogen bonding and forms charge transfer complex (CTC). These formed CTC will affect the optical property of the composite film, which is reflected from UV‐Visible study. Using the observed UV–Visible spectra, optical energy band gap is estimated and its value decreases with increasing dopant concentration. The positron annihilation studies show that the considerable effect on free volume related microstructure of the PVA due to doping and complex formation. These microstructural modifications are also enhances PVA crystallinity which is reflected from XRD studies. It is also observed that the TiO2 particle forms cluster within the PVA due to the aggregation of particles and these particle cluster size increases with dopant concentration. These microstructural variations due to doping affects the DC electrical conductivity and its variations are understood based on the intra chain one‐dimensional interpolaron hopping conduction mechanism. POLYM. COMPOS. 37:987–997, 2016. © 2014 Society of Plastics Engineers  相似文献   

12.
In the present investigation, at first, the surface of titanium dioxide (TiO2) nanoparticles was modified with γ-aminopropyltriethoxy silane as a coupling agent. Then a new kind of poly(vinyl alcohol)/titanium dioxide (PVA/TiO2) nanocomposites coating with different modified TiO2 loading were prepared under ultrasonic irradiation process. Finally, these nanocomposites coating were used for fabrication of PVA/TiO2 films via solution casting method. The resulting nanocomposites were fully characterized by Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), thermogravimetric analysis/derivative thermal gravimetric (TGA/DTG), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The TEM and SEM results indicated that the surface modified nanoparticles were dispersed homogeneously in PVA matrix on nanoscale and based on obtained results a possible mechanism was proposed for ultrasonic induced nanocomposite fabrication. TGA confirmed that the heat stability of the nanocomposite was improved. UV–vis spectroscopy was employed to evaluate the absorbance and transmittance behavior of the PVA/TiO2 nanocomposite films in the wavelength range of 200–800 nm. The results showed that this type of films could be used as a coating to shield against UV light.  相似文献   

13.
Three types of anti-UV non-spherical polymer particles (AUNSPP) based on methacrylate and anti-UV PVA nanofiber were synthesized to study and compare their UV protection properties. In the first type of AUNSPP, polystyrene seeds were swollen with dichloromethane solution of 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl) phenol (TINUVIN® 234, which hereafter is called TINUVIN), styrene, divinylbenzene, and 2,2′-azobisisobutyronitrile (AIBN). In the other two types of AUNSPP, poly(methyl methacrylate) seeds were swollen with dichloromethane solution of TINUVIN, methyl methacrylate, lauryl methacrylate, ethylene glycol dimethylacrylate, and AIBN. Subsequently, dichloromethane was evaporated from the swollen microspheres, and polymerization was accomplished by elevating the temperature of swollen particles to 70 °C. The final particles were assigned as P(S)/TINUVIN, P(S-DVB)/TINUVIN, P(LMA–EGDMA)/TINUVIN, and P(MMA–EGDMA)/TINUVIN composite microspheres. Anti-UV PVA nanofibers were prepared by dispersing P(S-DVB)/TINUVIN microparticles in PVA aqueous solution. Finally, this mixture was electrospun under ambient conditions. Particle size, size distribution, and morphology of the particles were investigated by SEM micrograph and image analyzer software (Image J). The presence of TINUVIN in P(S-DVB)/TINUVIN composite particles was confirmed by FTIR and phosphorescence spectroscopy. The UV protective properties of microcomposite particles and anti-UV nanofibers were studied by UV–Vis spectra of their polyurethane (PU) composite film. Comparatively, similar cutoff wavelength effects were observed in the range of 200–400 nm in all the samples. The obtained results showed consistent drop in the UV-blocking efficiency as the UV irradiation time increased. PU/PS/TINUVIN and PU/anti-UV nanofiber composite films showed the worst and best UV-blocking efficiency, respectively. After 200, 400, 600, 800, and 1000 h of UV irradiation time, the blocking efficiency of the PU–PS/TINUVIN composite films dropped from 80 to 72, 68, 65, and 59 %, and that of the PU/anti-UV nanofiber composite films dropped from 98 to 97, 94, 86, and 83 %.  相似文献   

14.
《Ceramics International》2017,43(6):5292-5301
The development of heterostructured semiconductor photocatalysts makes a noteworthy advancement in environmental purification technology. In this work, a novel heterostructured Bi2O3−CeO2−ZnO, fabricated by a combination of microwave-assisted hydrothermal and thermal decomposition methods, showed an enhanced photocatalytic activity for Rhodamine B (RhB) degradation under sunlight, as compared to pristine ZnO, Bi2O3, CeO2, and commercial Degussa TiO2-P25. The obtained products were thoroughly characterized by various techniques including X- ray powder diffraction (PXRD), field emission scanning electron microscopy (FE-SEM), elemental color mapping, energy-dispersive X-ray spectroscopy (EDAX), Raman spectrometry, Fourier transform infrared (FT-IR) spectroscopy, UV–visible diffuse reflectance spectroscopy (UV–vis DRS), and photoluminescence (PL) spectroscopy. PXRD analysis reveals that the heterostructure has the monoclinic lattice phase of α-Bi2O3, the cubic phase of CeO2 and the hexagonal wurtzite phase of ZnO. FE-SEM images show that Bi2O3−CeO2−ZnO has an ordered mixture of nanorod and nanochain structures. EDAX, elemental color mapping, Raman and FT-IR analyses confirm the successful formation of the heterostructured Bi2O3−CeO2−ZnO. The UV–Vis DRS results demonstrate that Bi2O3−CeO2−ZnO exhibits wide visible-light photoabsorption in 400–780 nm range. Moreover, the reduction in PL intensity of the heterostructured Bi2O3−CeO2−ZnO, when compared to the pristine Bi2O3, CeO2, and ZnO, indicates enhanced charge separation. The study on the mechanism displayed that the improved photocatalytic activity of Bi2O3−CeO2−ZnO could be attributed to (1) the efficient separation of photoinduced electrons and holes of the photocatalysts, caused by the vectorial transfer of electrons and holes among ZnO, CeO2 and Bi2O3, and (2) the wide visible-light photoabsorption range. This study introduces a new class of promising sunlight-driven photocatalysts.  相似文献   

15.
以芳纶纤维Kevlar@49为原料,在温和条件下制备了芳纶纳米纤维分散体(ANFS),并利用分散体制备了芳纶纳米纤维/聚乙烯醇(ANFs/PVA)复合膜。通过傅里叶红外光谱(FTIR)仪、差示扫描量热(DSC)仪、原子力显微镜(AFM)、扫描电子显微镜(SEM)、电子万能试验机及透光度/雾度测定仪等考察了复合膜的微观结构、热学、光学及力学性能。FTIR证明,复合膜中ANFs与PVA具有一定的分子间氢键作用,促进了ANFs在PVA基体中的分散。由AFM和SEM可以清晰观察到直径为20~30 nm的芳纶纳米纤维分散体,并且通过SEM观察到复合膜表面较为平整。当芳纶纳米纤维质量分数为6.0%时,复合膜的抗拉强度为17.86 MPa,断裂伸长率为442%;透光度为82.63%,雾度为27.56%;玻璃化温度,熔融温度和结晶温度分别为75.20、208.82和174.51℃,表明其透光性良好,力学和热学性能达到最佳。  相似文献   

16.
This study examined the role of boric acid and the effect of heat treatment on PVA‐iodine polarizing films prepared in the solution state before casting (IBC) of PVA/iodine/boric acid films. The films were prepared by casting aqueous solutions of 10 wt % poly(vinyl alcohol) (PVA) containing boric acid with 0, 0.1, 0.3, and 0.5 mol/l of I2/KI aqueous solution, and I2/KI(1 : 2) with 5 wt % of PVA. The effect of boric acid and heat treatment on the durability of the IBC PVA polarizing sheet films was investigated by UV–vis absorption spectroscopy. Boric acid was found to be essential for the complex formation in PVA/iodine solutions at relatively low I2/KI concentrations and high temperatures. The strength of the complex peak at ∼ 600 nm in UV–vis absorption spectra increased with increasing boric acid concentration. With increasing heating temperature over 90°C the intensity of the peak at 600 nm corresponding to the complex decreased due to the evaporation of I2 decomposed from I5, but the peak at 355 nm corresponding to free I2·I3 was remained unchanged. From heat treatment at 150°C, the intensity of the peak at 600 nm decreased but the intensity of the complex peak (600 nm) of the sample with 0.5 mol/l boric acid was unaffected. The transmittance and degree of polarization for the films increased and decreased with increasing heat treatment time under heat and a humid atmosphere, respectively. However, this tendency decreased with increasing boric acid concentration and heat treatment. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
The paper presents a simple and effective approach to fabricating a poly(vinylidene fluoride) (PVDF) film with excellent ultraviolet (UV) shielding performance. Carbon quantum dots (CQDs) with a highly UV absorbing property were made via a hydrothermal reaction and were then added to a poly(vinyl alcohol) (PVA) solution. The PVDF membrane pretreated with an alkaline solution was immersed in the prepared CQD/PVA solution to coat a UV-shielding layer on the film surface. Fourier transform infrared spectroscopy, X-ray photoelectron spectrometry, X-ray diffraction, transmission electron microscopy, and UV–visible spectrophotometry were applied to study the structure, morphology, and optical performance of the CQD particles. The stability and UV-shielding performance of the obtained PVDF-OH@CQDs/PVA composite film were further investigated. The results showed that the CQD particles with diameter of 18 nm could be well dispersed in solution. Additionally, the CQDs had fairly high UV absorbance, and the PVDF-OH@CQDs/PVA composite film could shield the UV light completely. The method described in this paper is a promising one for fabricating UV-shielding composite films. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47555.  相似文献   

18.
Currently, the rising environmental concerns caused by nonbiodegradable food packaging materials have promoted the research and development of biodegradable alternatives. Polyvinyl alcohol (PVA) was selected as the substrate, and zinc oxide nanoparticles (ZnONPs) and titanium dioxide nanoparticles (TiO2NPs) were blended and modified with PVA, respectively. Based on the electrostatic spinning technology to prepare fiber membranes with high strength and UV blocking properties for grapes preservation. The study indicated that the tensile strength of PVA fiber membranes increased by 243% and 209% when ZnONPs and TiO2NPs were added at 1%, respectively. Under UV radiation, the PVA/ZnO composite membranes exhibited superior UV absorption than the PVA/TiO2 composite membranes. After conducting TG tests, it was found that the addition of ZnONPs decreased the thermal stability of the fiber membranes, while TiO2NPs could improve the thermal stability. Both composite membranes could extend grapes' shelf life, but the PVA/ZnO composite membranes were more effective at maintaining freshness than the PVA/TiO2 composite membranes.  相似文献   

19.
PVA films with various filling levels of CrF3 and MnCl2 were prepared. ESR and UV/VIS optical analysis were used to shed more light on the structural modification that occur due to filling with different levels and/or UV irradiation. The ESR analysis revealed that the spin configuration of CrF3, MnCl2, and CoBr2‐filled PVA are different. The filling level dependence of ESR parameters was discussed. The UV‐VIS spectral analysis for pure PVA shows absorption bands at 265 and 280 nm, which were assigned to the presence of carbonyl groups. The addition of CrF3 led to the appearance of another bands at 418 and 596 nm. The filling level and/or UV irradiation have no effect on the position of absorption bands but the intensity of these bands has been changed. The addition of MnCl2 led to a new band at about 350 nm due to charge transfer transition. The ligand field parameters and optical energy gaps can be calculated and discussed. The results of optical and ESR analysis indicated that the Cr3+ or Mn2+ are present in its octahedral symmetrical form within the PVA Matrix. SEM micrographs of CrF3 filled PVA is discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 104–111, 2003  相似文献   

20.
A series of poly(vinyl alcohol) (PVA)/regenerated silk fibroin (RSF)/nano-silicon dioxide (nano-SiO2) blend films were prepared by solution casting method, in which nano-SiO2 was obtained via sol?Cgel process. The structure, properties, and morphology of the films related to the compatibility were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). XRD peaks of PVA/RSF/nano-SiO2 (1.0?wt?%) blends decreased in intensity indicated that formation of PVA and RSF crystal lattices was hindered by nano-SiO2 particles. FTIR spectroscopy analysis of PVA/RSF/nano-SiO2 films confirmed that both Si?CO?CC linkage and hydrogen bonding were formed among PVA, RSF, and nano-SiO2. SEM showed that there was no obvious phase separation in PVA/RSF/nano-SiO2 (1.0?wt?%) film although small uniform blur particles can still be found. In addition, TEM showed nano-particles were well dispersed through the PVA/RSF polymer matrix. Besides, the observed shift in glass transition temperatures (T g) and improvement in thermal properties of composite films suggested the enhanced compatibility due to interfacial bonding and intermolecular interactions. Therefore, these results indicated that the compatibility of PVA/RSF was improved effectively by the addition of nano-SiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号