首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Novel, flexible, lead‐free X‐ray‐shielding composites were prepared with a high‐functional methyl vinyl silicone rubber (VMQ) matrix with W and Bi2O3 as filler materials. To verify the advanced properties of the lead‐free material, composites with the same mass fraction of PbO were compared. With the X‐ray energy ranging from 48 to 185 keV, the W/Bi2O3/VMQ composites exhibited higher X‐ray‐shielding properties. As the filler volume fraction decreased, the tensile strength, elongation, tear strength, and flexibility of the W/Bi2O3/VMQ composites increased. The Shore hardness of the W/Bi2O3/VMQ composites had a maximum value of 46.6 HA and was still very flexible. With decreasing filler volume fraction, the water‐vapor transmission performances of the W/Bi2O3/VMQ composites increased, and the W/Bi2O3/VMQ composites also showed better water‐vapor permeability. The heat‐transfer properties of the W/Bi2O3/VMQ composites increased with increasing W content, and when the W content exceeded 70 wt %, the thermal conductivity of the W/Bi2O3/VMQ material was about 70.45% higher than that of the PbO/VMQ composite. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43012.  相似文献   

2.
In the present work, we have explored the efficacy of bismuth (III) oxide (Bi2O3) loaded, calcium ion cross-linked solution cast sodium alginate composite films for radioprotective applications. Calcium ion cross-linking increased the water and chemical resistance, which further improved on introduction of Bi2O3 into the composites. The 40 wt% Bi2O3 loaded films showed good heat resistance with the peak degradation temperature reaching as high as 251°C. The Bi2O3 loaded composites showed enhanced tensile strength (TS) and Youngs modulus (YM). Compared to high-modulus polymers like epoxy, high-density polyethylene (HDPE) and poly (vinyl chloride) (PVC), these exhibit relatively greater extent of stretching before breaking. The γ-ray attenuation experiments showed that mass attenuation coefficients of the composites at various γ-ray energies increased with filler loading. These composites are effective in shielding γ-rays from radioactive sources like 137Cs, 22Na, 133Ba, and 60Co that are widely employed in several medical and industrial applications. The overall enhancement in thermal, mechanical, and radiation shielding characteristics of the composites may be attributed to the uniform distribution of the fillers in alginate matrix. These nontoxic sodium alginate/Bi2O3 composites can be used as soft and biodegradable radiation shields, which may be processed to wearable forms.  相似文献   

3.
Radiation shielding composites of ethylene-propylene diene monomer (EPDM), reinforced with tungsten (W) and barium sulphate (BaSO4) in different filler weight (wt%) were synthesized. The effects of W and BaSO4 on gamma and neutron attenuation properties of the composites were studied by experimental methods using 137Cs, 60Co and 252Cf radioactive sources. EPDM composites with W and BaSO4 fillers were also investigated for filler dispersion using scanning electron microscopy and X-ray radiograph. The experimental results revealed that the incorporation of W and BaSO4 significantly improved the radiation attenuation properties of the EPDM composites. It was observed that the attenuation properties of the composite material increases with higher concentration of the filler. The half-value layer (HVL), tenth value layer thickness and relaxation length of the composites were found to decrease with increasing concentration of the filler. The results also showed that the attenuation behaviour of 50 wt% BaSO4 filled polymer composite is comparable to that of the composite with 25 wt% W. The developed composite with 75 wt% W filler exhibited the maximum radiation attenuation with lowest HVL thicknesses.  相似文献   

4.
Particulate polymer composites of Isophthalate based unsaturated polyester resin filled with different concentrations of lead monoxide were prepared. These composites were investigated for physical, thermal, mechanical, and gamma radiation shielding characteristics. The results of density evaluation, microscopic studies, and the radiation shielding properties for gamma rays of energy 0.662 MeV from Cs‐137 point source have been presented in this article. The results show that, the density of the composites was observed to increase with filler loading. The morphological analysis of the composites made using the scanning electron microscope showed that, the lead monoxide particles were observed to disperse uniformly in the polymer matrix with an average inter particle distance of about 10 μm and an average size of about 5.36 μm. The linear attenuation coefficient of the composites was found to increase with increased filler content in the composites. The highest value of 0.206 cm?1 was found for 50 wt % of lead monoxide. These composites were observed to exhibit excellent % of heaviness and Half value layer in comparison with other conventional materials. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
《Ceramics International》2020,46(10):16452-16458
This paper focuses on the effect of Bi2O3 content (up to 80 mol%) on mechanical features and radiation shielding characteristics of boro-tellurite glasses within TeO2–B2O3–Bi2O3 system. The basic mechanical parameters such as oxygen molar volume, packing density, hardness, and elastic moduli were studied based on Makishima–Mackenzie's theory. The shielding studies of the TeO2–B2O3–Bi2O3 glasses included gamma, electron and neutron radiations. The newly developed Phy-X/PSD program and Geant4 simulation were used to calculate the shielding parameters such as mass attenuation coefficient (μ/ρ), tenth value layer (TVL), mean free path (MFP), stopping power (ψe)), removal cross section (RCS), CSDA range, effective atomic number (Zeff), and half value layer (HVL). The concentration of Bi2O3 content had a significant effect on the gamma shielding competence of the investigated glasses. Form the results of gamma shielding studies, the highest μ/ρ (99.845 cm2/g) occurred at 0.015 MeV for TBB80 and the lowest μ/ρ (0.039 m2/g) occurred at 4 MeV for TBB40. The maximum values of Zeff for gamma interaction occurred at 0.02 MeV and they were 77.26, 78.81, 79.94, 80.80, and 81.48 for TBB40, TBB50, TBB50, TBB60, TBB70, and TBB80, respectively. The gamma shielding features of the investigated glasses were compared with those of various ordinary concretes, and Pb-free, Pb-based, and commercial glasses. The Bi2O3 content had also a considerable influence on the electron shielding competence of the tested glasses. The maximum values of Zeff for electron interaction occurred at 14 MeV and they were 44.58, 47.72, 50.41, 52.75, and 53.73 for TBB40, TBB50, TBB50, TBB60, TBB70, and TBB80, respectively. The results revealed that the bismuth boro-tellurite glasses could be useful for the shielding against gamma, electron, and neutron radiations, wherein the Bi2O3 content can be balanced according to the type and energy of radiation.  相似文献   

6.
The distribution of a filler in a polymeric matrix is one of the most important factors affecting the physical properties of the final product. For this reason, the main objective of this study was to introduce aluminum oxide (Al2O3), acting as a dispersing agent, to reduce the filler–filler interaction and enhance the filler–polymer interaction. To achieve this aim, the electrical behavior of a styrenated polyester resin filled with different amounts of high‐abrasion furnace black in the presence of 5% Al2O3 was studied in the vicinity of the percolation threshold to evaluate the effect of the addition of Al2O3 in an attempt to reduce the filler–filler interaction through the polyester matrix. At a certain concentration of carbon black, an abrupt increase was noticed through electrical conductivity, permittivity, and dielectric loss investigations. With this increase, the tendency of conductive chain formation increased through the aggregation of a carbon black particle network. The addition of 5% Al2O3 improved the filler distribution by lowering the aggregate size and consequently enhanced the formation of the network. From the Arrhenius temperature dependence of the electrical conductivity, the activation energy and pre‐exponential factor were obtained, and they confirmed the validity of the compensation law for the semiconducting composite systems. The composites were also analyzed by thermogravimetric analysis. Al2O3 improved the thermal stability of the composites in comparison with that of a sample free of Al2O3. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Poly(ethylene‐co‐vinyl acetate) (EVA)/magnetite (Fe3O4) nanocomposite was prepared with different loading of Fe3O4 nanoparticles. The mixing and compounding were carried out on a two‐roll mixing mill and the sheets were prepared in a compression‐molding machine. The effect of loading of nanoparticles in EVA was investigated thoroughly by different characterization technique such as transmission electron microscopy (TEM), X‐ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), limiting oxygen index (LOI), and technological properties. TEM analysis showed the uniform dispersion of filler in the polymer matrix and the dispersion of filler decreased with increase in filler content. XRD of the nanocomposite revealed the more ordered structure of the polymer chain. An appreciable increase in glass transition temperature was observed owing to the restricted mobility of Fe3O4‐filled EVA nanocomposite. TGA and flame resistance studies indicated that the composites attain better thermal and flame resistance than EVA owing to the interaction of filler and polymer segments. Mechanical properties such as tensile strength, tear resistance, and modulus were increased for composites up to 7 phr of filler, which is presumably owing to aggregation of Fe3O4 nanoparticle at higher loading. The presence of Fe3O4 nanoparticles in the polymer matrix reduced the elongation at break and impact strength while improved hardness of the composite than unfilled EVA. The change in technological properties had been correlated with the variation of polymer–filler interaction estimated from the swelling behavior. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40116.  相似文献   

8.
《Ceramics International》2020,46(8):11861-11873
In this research paper, we studied the optical and nuclear shielding efficiency of newly developed BGO glasses with the following compositions (in wt%): 32Bi2O3–68GeO2, 42Bi2O3–58GeO2, 47Bi2O3–53GeO2, 52Bi2O–48GeO2, 62Bi2O3–38GeO2. BGO glasses were prepared by traditional melt quenching method. To obtain the band gap values of fabricated BGO glasses, optical absorption spectra were used for evaluation of optical properties. The mass attenuation coefficients (μ/ρ) were achieved for prepared glasses at 0.015–15 MeV photon energies employing MCNPX Monte Carlo code and WinXcom program. Moreover, broad-range of nuclear shielding parameters for gamma ray, neutrons and charged particles such as mass attenuation coefficient, half value layer, effective atomic number, buildup factors, mass stopping powers, projected ranges, fast neutron removal cross sections and damage factors were calculated. The refractive index is calculated from Eopt, As Bi2O3 concentration is enhanced, Eopt is also increased as well as the optical electronegativity and consequently the refractive index. In addition, the results showed that BIGE5 glass sample with highest Bi2O3 contribution has excellent nuclear radiation shielding ability among the other fabricated glass samples.  相似文献   

9.
Thermoelectric modules can be used for thermal energy harvesting. Common rigid thermoelectric stacks usually contain heavy metal alloys such as Bi2Te3. In order to substitute conventional materials and to reduce manufacturing costs, nontoxic, inexpensive and abundant materials using low‐cost processes are first choice. This study deals with polymer composites consisting of a polysiloxane matrix filled with thermoelectric Sn0.85Sb0.15O2 particles in micrometer scale. Thin composite sheets have been prepared by doctor blade technique and the Seebeck coefficient, the electrical and thermal conductivity, and the porosity were measured. Platelet‐type particles, consisting of Sn0.85Sb0.15O2‐coated insulating mica substrate and globular Sn0.85Sb0.15O2 particles have been varied in size, coating thickness and were mixed with each other in different ratios. The filler content was varied in order to maximize the figure of merit, ZT, to 1.9 × 10?5 ± 4 × 10?6. Owing to their low raw material costs and the high degree of design freedom of polymer composites, one may use these materials in thermoelectric generators for remote low‐power demanding applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40038.  相似文献   

10.
Epoxy resin filled with suitable high Z elements can be a potential shield for X-rays and γ-rays. In this work, we present the γ-ray attenuation properties of epoxy composites filled with (0–30 wt%) Tantalum pentoxide (Ta2O5) and Ta2O5-Bi2O3, which were prepared by open mold cast technique. X-ray diffraction patterns showed crystalline peaks of Ta2O5 and bismuth oxide (Bi2O3) in the prepared epoxy-Ta2O5 and epoxy-Ta2O5-Bi2O3 composites. Homogeneity of the samples at higher filler wt% was revealed by SEM images. Mechanical characterization showed the enhanced mechanical strength of epoxy-Ta2O5-Bi2O3 composites compared to epoxy-Ta2O5. Higher storage modulus and glass transition temperature of the epoxy-Ta2O5-Bi2O3 composites showed enhanced stiffness and thermal stability when compared to neat and epoxy-Ta2O5. Decrease in the value of tan(δ) at higher content of filler loadings indicated the good adhesion between filler and matrix. Mass attenuation coefficients of epoxy-Ta2O5 (30 wt%) composites at γ-ray energies 59.54 and 662 keV were found to be 0.876 cm2 g–1 and 0.084 cm2 g–1, while that of epoxy-Ta2O5-Bi2O3 (30 wt% Bi2O3) composite were 1.271 cm2 g–1 and 0.088 cm2 g–1, respectively. The epoxy-5% Ta2O5-30% Bi2O3 composites with higher μ/ρ value and tensile strength may be a potential γ-ray shield in various radiation environments.  相似文献   

11.
Properties such as gamma shielding, cure characteristics, and mechanical properties of natural rubber (NR) system with addition of oxides such as: iron (II, III) oxide (Fe3O4), tungsten (III) oxide (W2O3), or bismuth (III) oxide (Bi2O3) were studied for potential replacement of flexible lead (Pb), and introduced as gamma-shielding materials, to minimize risks caused by Pb. The results showed that increase in the content of oxides such as Fe3O4, W2O3, or Bi2O3 from 0 to 100, 300, and 500 parts/100 parts of rubber by weight (phr) increased the gamma attenuation coefficients, tensile modulus at 100% elongation, and hardness (Shore A), though they reduced the tensile strength and elongation-at-break. The composites also underwent thermal aging tests at 70 °C for 96 h. The results indicated slight reduction in the overall tensile properties. Specifically, for NR composites with 300 or 500 phr of Bi2O3, the mass attenuation coefficients (μ m) of these composites were the highest among other composites and even higher than lead sheets that were measured using the same set-up. The outcome of the results imply great possibilities of replacing hazardous lead-containing gamma-shielding materials with the investigated composites, while still providing safe and efficient gamma-shielding properties for the users.  相似文献   

12.
J. Seo  S. Kim  S. Samal 《应用陶瓷进展》2014,113(6):334-340
Abstract

Variation in the viscous flow behaviour, nature and extent of glass fluidity in glass/filler composites are addressed with respect to various factors such as filler type, content, size, density and migration distance. The characterisation of a glass (Bi2O3–B2O3–ZnO) composite consisting of two different fillers (cordierite and willemite) was determined using hot stage microscopy, a differential scanning calorimeter and a flow button test. The microstructure was analysed using a scanning electron microscope. The apparent viscosity of the glass composites increased on increasing concentration and density of the filler. The variation in the viscosity is due to the diffusion of the glass matrix through channels in the cordierite filler of the composite. Based on the calculated migration distance of the filler in the glass matrix, the present work suggests that the interfacial behaviour and the density of the filler play a significant role in determining the viscous flow of the glass composites.  相似文献   

13.
The commencement of the industrial revolution paved the way for the fabrication of flexible polymers with high‐strength metalloceramics as novel materials of all kinds. Fabricating metal–ceramic/polymer conductive composites is one such dimension followed for the present research work making use of the properties of the three components. Electroless deposition, for permanent metallic coating, was performed to coat Al2O3 with metallic Cu followed by the inclusion of the Cu–Al2O3 filler into a poly(vinyl chloride) (PVC) matrix. X‐ray diffraction and energy‐dispersive X‐ray studies predicted a prominent growth of metallic Cu crystallites onto Al2O3 with an increased average size and variation in elemental composition, respectively, when compared to pristine Al2O3. Morphological behaviour via scanning electron microscopy also envisioned uniform Cu coating onto Al2O3 and a homogeneous dispersion throughout the polymer matrix. When incorporated into PVC, electrical conductivity analysis highlighted a distinct variation in composite phases from insulating (7.14 × 10?16 S cm?1) to semiconducting behaviour (8.33 × 10?5 S cm?1) as a function of Cu–Al2O3 filler. Mechanical behaviour (tensile strength, Young's modulus and elongation at break) and thermal properties of the prepared composites also indicated a substantial improvement in material strength with Cu–Al2O3 incorporation. The enhanced electrical conductivity along with improved thermomechanical status with significant filler–matrix interaction permits the potential usage of such novel composites in a range of state‐of‐the‐art semiconducting electronic devices. © 2018 Society of Chemical Industry  相似文献   

14.
Optical and FT Infrared spectroscopic measurements have been utilized to investigate and characterize binary bismuth silicate glass together with derived samples by replacements of parts of the Bi2O3 by SrO, BaO, or PbO. This study aims to justify and compare the spectral and shielding behavior of the studied glasses containing heavy metal ions towards gamma irradiation. The study also aims to measure or calculate the optical energy band gap of these glasses. The replacements of parts of Bi2O3 by SrO, BaO or PbO caused some changes within the optical and infrared absorption spectra due to the different housing positions and physical properties of the respective divalent Sr2+, Ba2+, Pb2+ ions. The stability of both the optical and infrared spectra of the studied bismuth silicate glass and related samples towards gamma irradiation confirm some shielding behavior of the studied glasses and their suitability as radiation shielding candidates.  相似文献   

15.
《Ceramics International》2022,48(3):3464-3472
The aim of this paper is to the synthesis of ZnO– Bi2O3 nanocomposites and characterization their optical, structure, and radiation shielding properties. The microwave –assisted hydrothermal method was adopted for the synthesis of ZnO– Bi2O3 nanocomposites coded as 100Z, 25B075Z, and 50B-50Z. The FTIR and UV spectra of the samples were analysed to obtain their optical and chemical structure features. Also, the gamma-ray photon shielding parameters of the nanocomposites were evaluated using the EPICS2017 data library and by Geant4 Monte Carlo simulations for photon energies 1 keV–10 MeV. The FTIR spectrum analysis confirms the chemical bond structure of the samples. On the other hand, the optical bandgap of the nanocomposites decreased from 3.3 to 2.95 eV as the Bi2O3 nanoparticles increased in the samples. Obtained values of the mass attenuation coefficients of the samples increased in the order of 100Z, 25B075Z, and 50B-50Z. Value of the effective atomic number varies from 13.91 to 29.55, 20.30–55.97, and 26.70–68.97 for 100Z, 25B-75Z, and 50B-50Z correspondingly. The 100Z, 25B075Z, and 50B-50Z nanocomposites were found to have comparable photon shielding ability with respect to high density common commercial glass shields. The present nanomaterials could be adopted as additives to enhance photon shielding competence of existing composite materials.  相似文献   

16.
Metal‐polymer composites based on polyethylene (PE), polyoxymethylene (POM), polyamide (PA) and a PE/POM blend as matrix and dispersed iron (Fe) as filler have been prepared by extrusion of the appropriate mechanical mixtures, and their electrical conductivity, dielectric properties and thermal conductivity have been investigated. The filler spatial distribution is random in the PE‐Fe, POM‐Fe and PA‐Fe composites. In the PE/POM‐Fe composite the polymer matrix is two‐phase and the filler is contained only in the POM phase, resulting in an ordered distribution of dispersed Fe in the volume of polymer blend. The transition through the percolation threshold ?c is accompanied by a sharp increase of the values of conductivity σ, dielectric constant ε′ and dielectric loss tangent tan δ. The critical indexes of the equations of the percolation theory are close to the theoretical ones in the PE‐Fe and POM‐Fe composites, whereas they take unusually high values in the PE/POMFe composite. Thus, t in the equation σ ~ (φ – φc)t is 2.9–3.0 in the systems characterized by random distribution of dispersed filler and 8.0 in the PE/POM‐Fe system. The percolation threshold φc depends on the kind of polymer matrix, becoming 0.21, 0.24, 0.29 and 0.09 for the composites based on PE, POM, PA and PE/POM, respectively. Also the thermal parameters of the PE/POM‐Fe composite are different from those of all other composites. A model explaining the unusual electrical characteristics of the composite based on the polymer blend (PE/POM‐Fe) is proposed, in agreement with the results of optical microscopy.  相似文献   

17.
CoFe2O4 magnetic nanoparticles were prepared by in situ precipitation and oxidation of Co2+ and Fe2+ within a sulfonated polystyrene resin. The nanometric particles were characterized by X‐ray diffraction. A ferrofluid was prepared from the CoFe2O4 mineralized polymer resin and water. Poly(vinyl alcohol) (PVA)‐based nanocomposite materials were obtained by mixing different amounts of ferrofluid (compositions ranging within 0–51 wt % of mineralized resin) with an aqueous solution of the polymer. The PVA composite materials were characterized by TGA, DSC, and stress–strain testing. The thermal and mechanical properties of PVA change with filler content, exhibiting an initial increase in these properties due to polymer–filler interactions. After a maximum value, at about 15 wt % of mineralized resin, the mechanical properties decrease probably due to particle aggregation which causes phase separation. The results obtained show that the nanoparticles are dispersed in the amorphous regions of the polymer, the crystalline zones remaining unaltered up to compositions as high as 30 wt %. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3215–3222, 2001  相似文献   

18.
β-crystalline phase polypropylene (PP) composites containing 5, 10, 20, 30, and 40% (by weight) of CaCO3 filler were prepared by injection molding. The β-form PP was produced by adding a bicomponent β-nucleator consisting of equal amounts of pimelic acid and calcium stearate. The morphology, static tensile, and impact properties of these composites were investigated in this study. Scanning electron microscopy (SEM) observations revealed that the β-spherulites of the polymer matrix of the composites exhibit curved lamellae and sheaf-like structures. The fillers were observed to disperse within the inter-lamellar spacings of the β-PP composite containing 10% calcium carbonate addition. However, the filler particles tend to link together to form larger aggregates when the filler content reaches 20%. Static tensile measurements showed that the elastic modulus of the composites increases with increasing filler content but the yield strength decreases with increasing filler addition. The falling weight Charpy impact test indicated that the β-PP polymer exhibits the highest critical strain energy release rate (Gc) value. However, there was a drastic drop in Gc of the β-PP composites with increasing filler content. The results are discussed and explained in terms of materials morphology.  相似文献   

19.
Ceramic reinforced polyethylene and polystyrene composites were prepared by melt mixing and hot molding techniques. Temperature stable low‐loss Ca[(Li1/3Nb2/3)0.8Ti0.2]O3‐δ (CLNT) ceramic was used as the filler to improve the dielectric properties of the polymers. The relative permittivity and dielectric loss in the microwave frequency range were increased with increase in the ceramic loading. As the filler content increased from 0 to 0.50 volume fraction, the relative permittivity increased from 2.3 to 9 and dielectric loss tangent from 0.0006 to 0.005 for polyethylene‐CLNT composite. In the case of polystyrene‐CLNT composite, the relative permittivity and dielectric loss tangent increased from 2.1 to 10.5 and 0.0005 to 0.0032 respectively with increase in filler content from 0 to 0.50 volume fractions. The thermal stability of the relative permittivity of polymer ceramic composites was also investigated. The experimentally observed relative permittivity was compared with theoretical models. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

20.
Gd2O3/PEEK (poly ether ether ketone) composites were prepared on a twin‐screw extruder by the incorporation of Gd2O3 as a shield against X‐ray to PEEK matrix. The influence of Gd2O3 addition and surface treatment of the particles with sulfonated PEEK (SPEEK) on the morphology, thermal and mechanical properties of the composites was investigated by SEM, DSC, TGA and tensile tests respectively. DSC results showed that both the crystallization temperature (Tc) and melting temperature (Tm) of the composites decreased compared with pure PEEK at random filler content, which suggested that Gd2O3 hindered the process of PEEK nucleation. The tensile modulus of the composites increased with addition of Gd2O3 and the strain to break decreased. But the tensile modulus and strength of modified series were always higher than that of unmodified ones at the same filler content. The X‐ray shielding properties of composites apparently improved with the increment of the Gd2O3. The X‐ray transmittance (A) of 45% S4GPEEK reduced greatly by about three to eight times compared with PEEKs in all energy range measured. POLYM. COMPOS., 36:651–659, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号