首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effective encapsulation of montmorillonite intermediate particles (I‐MMT) within poly (vinyl acetate‐co‐methyl methacrylate) (PVAMMA) copolymer by in situ suspension polymerization was performed. The I‐MMT encapsulation, layer exfoliation behavior, chemical composition, particle size distribution and thermostability of PVAMMA/I‐MMT nanocomposite microspheres were characterized by electron microscopies, X‐ray diffraction (XRD), laser particle analyzer, and thermogravimetric analysis (TGA). Swelling behaviors of the nanocomposite microspheres in various cationic salt solutions (NaCl and CaCl2) and anionic salt solution (NaCl and Na2SO4) were also investigated. Results showed that the properties of layer dispersion surface and expansion of these nanocomposite microspheres were well achieved. The synthetic yields of the nanocomposites decreased as the I‐MMT loading increased. These nanocomposite microspheres had an average size from 96.8 μm to 138.4 μm with narrow particle size distribution, loose, and porous surface morphology. XRD patterns clearly proved the exfoliation of MMT layers in the copolymer matrix, which was consistent with TEM analysis. These nanocomposite microspheres showed higher negative zeta potential and higher thermal stability than those of the copolymer microspheres, which was due to the layer exfoliations in encapsulated microspheres. These selected microspheres with 10 to 70 μm diameters provided effectively plugging in the micrometer‐sized core channels through deformation and migration process in plugging experiments, which made them be the candidate materials for modifying the porous reservoir to enhance oil recovery in petroleum engineering. POLYM. COMPOS., 35:1104–1116, 2014. © 2013 Society of Plastics Engineers  相似文献   

2.
Polyamide 6 (PA6) nanocomposites based on epoxy resin‐modified montmorillonite (EP‐MMT) were prepared by melt processing using a typical twin‐screw extruder. X‐ray diffraction combined with transmission electron microscopy was applied to elucidate the structure and morphology of PA6/EP‐MMT nanocomposites, suggesting a nearly exfoliated structure in the nanocomposite with 2 wt % EP‐MMT (PA6/2EP‐MMT) and a partial exfoliated‐partial intercalated structure in PA6/4 wt %EP‐MMT nanocomposite (PA6/4EP‐MMT). The thermogravimetric analysis under air atmosphere was conducted to characterize the thermal–oxidative degradation behavior of the material, and the result indicated that the presence of EP‐MMT could inhibit the thermal‐oxidative degradation of PA6 effectively. Accelerated heat aging in an air circulating oven at 150°C was applied to assess the thermal–oxidative stability of PA6 nanocomposites through investigation of reduced viscosity, tensile properties, and chemical structure at various time intervals. The results indicated that the incorporation of EP‐MMT effectively enhanced the thermal–oxidative stability of PA6, resulting in the high retention of reduced viscosity and tensile strength, and the low ratio of terminal carboxyl group to amino group. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40825.  相似文献   

3.
BACKGROUND: Both exfoliated and toughened polypropylene‐blend‐montmorillonite (PP/MMT) nanocomposites were prepared by melt extrusion in a twin‐screw extruder. Special attention was paid to the enhancement of clay exfoliation and toughness properties of PP by the introduction of a rubber in the form of compatibilizer toughener: ethylene propylene diene‐based rubber grafted with maleic anhydride (EPDM‐g‐MA). RESULTS: The resultant nanocomposites were characterized using X‐ray diffraction, atomic force microscopy, scanning electron microscopy, thermogravimetric analysis, dynamic mechanical analysis and Izod impact testing methods. It was found that the desired exfoliated nanocomposite structure could be achieved for all compatibilizer to organoclay ratios as well as clay loadings. Moreover, a mechanism involving a decreased size of rubber domains surrounded with nanolayers as well as exfoliation of the nanolayers in the PP matrix was found to be responsible for a dramatic increase in impact resistance of the nanocomposites. CONCLUSION: Improved thermal and dynamic mechanical properties of the resultant nanocomposites promise to open the way for highly toughened super PPs via nanocomposite assemblies even with very low degrees of loading. Copyright © 2008 Society of Chemical Industry  相似文献   

4.
Acrylonitrile–butadiene–styrene (ABS)–clay composite and intercalated nanocomposites were prepared by melt processing, using Na‐montmorillonite (MMT), several chemically different organically modified MMT (OMMT) and Na‐laponite clays. The polymer–clay hybrids were characterized by WAXD, TEM, DSC, TGA, tensile, and impact tests. Intercalated nanocomposites are formed with organoclays, a composite is obtained with unmodified MMT, and the nanocomposite based on synthetic laponite is almost exfoliated. An unintercalated nanocomposite is formed by one of the organically modified clays, with similar overall stack dispersion as compared to the intercalated nanocomposites. Tg of ABS is unaffected by incorporation of the silicate filler in its matrix upto 4 wt % loading for different aspect ratios and organic modifications. A significant improvement in the onset of thermal decomposition (40–44°C at 4 wt % organoclay) is seen. The Young's modulus shows improvement, the elongation‐at‐break shows reduction, and the tensile strength shows improvement. Notched and unnotched impact strength of the intercalated MMT nanocomposites is lower as compared to that of ABS matrix. However, laponite and overexchanged organomontmorillonite clay lead to improvement in ductility. For the MMT clays, the Young's modulus (E) correlates with the intercalation change in organoclay interlayer separation (Δd001) as influenced by the chemistry of the modifier. Although ABS‐laponite composites are exfoliated, the intercalated OMMT‐based nanocomposites show greater improvement in modulus. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
A series of high‐temperature‐resistant polyimide/montmorillonite (PI/MMT) nanocomposite foams were prepared by solid blending method. The dispersion of MMT and effects of MMT content on the properties of the PI/MMT nanocomposite foams were investigated. Results indicated that MMT could be exfoliated effectively and dispersed uniformly in the PI matrix by the solid blending method. The introduction of MMT could considerably increase the reduced compressive strength, thermal resistance, and decrease the dielectric constant of the PI/MMT nanocomposite foams. The reduced compressive strength of nanocomposite foams showed a maximum value at the MMT content of 5 wt%, which was 197% higher than that of pure PI foams. It was worth noting that a significant increase in glass‐transition temperature (T g) could be achieved with the increase of MMT content, and the maximum T g was as high as 436°C at the MMT content of 7 wt%. This study may provide a useful method to prepare PI/MMT nanocomposite foams with improved properties for targeted high‐temperature applications. POLYM. ENG. SCI., 2011. ©2011 Society of Plastics Engineers  相似文献   

6.
Monomer styrene and initiator N,N′‐azobis(isobutyronitrile) were impregnated into montmorillonite (MMT) galleries using supercritical CO2 at 35°C and 12.0 MPa, after thermal polymerization of monomer at 65°C, resulting in MMT/polystyrene nanocomposites. The morphology and structure of the products were characterized by FTIR, powder X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis. The results indicate that MMT is dispersed in the composite with intercalated and exfoliated structures, enhancing the thermal stability of nanocomposites. Changing the soaking time and the content of MMT in the supercritical solution during the impregnating process can control the exfoliated extent of MMT. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1194–1197, 2004  相似文献   

7.
Poly(methylmethacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were prepared by in situ suspension polymerization. MMT was previously organically modified by different modification agents [dioctadecyl dimethyl ammonium chloride (DODAC) and methacrylatoethyltrimethyl ammonium chloride (MTC)] and different modification method (cation‐exchange reaction and grafting reaction), ultimately giving rise to five kinds of organomodified MMT (OMMT). The structure of the OMMT was studied by Wide angle X‐ray diffraction (WAXD) and Fourier transform infrared spectroscopy (FTIR). Meanwhile, the structure of the PMMA/MMT nanocomposites microspheres was also investigated by WAXD. The molecular weight of the polymers extracted from PMMA/MMT nanocomposites was measured by gel permeation chromatograph (GPC). Finally, the mechanical properties of these PMMA/MMT nanocomposites were studied in detail. It was found that large interlayer spacing (d001) of OMMT could not entirely ensure an exfoliated structure of resultant PMMA/MMT nanocomposites, while OMMT with relative small d001 could still yield exfoliated structure as long as the compatibility between OMMT and polymer matrix was favorable. In addition, the results of mechanical investigation indicated that the compatibility between OMMT and PMMA matrix turned out to be the dominant factor deciding the final mechanical properties of PMMA/MMT nanocomposites. POLYM. COMPOS., 37:1705–1714, 2016. © 2014 Society of Plastics Engineers  相似文献   

8.
Glycerol polyglycidyl ether (GPE) and polyglycerol polyglycidyl ether (PGPE) were cured with ε‐poly(L ‐lysine) (PL) using epoxy/amine ratios of 1 : 1 and 2 : 1 to create bio‐based epoxy cross‐linked resins. When PGPE was used as an epoxy resin and the epoxy/amine ratio was 1 : 1, the cured neat resin showed the greatest glass transition temperature (Tg), as measured by differential scanning calorimetry. Next, the mixture of PGPE, PL, and montomorillonite (MMT) at an epoxy/amine ratio of 1 : 1 in water was dried and cured finally at 110°C to create PGPE‐PL/MMT composites. The X‐ray diffraction and transmission electron microscopy measurements revealed that the composites with MMT content 7–15 wt % were exfoliated nanocomposites and the composite with MMT content 20 wt % was an intercalated nanocomposite. The Tg and storage modulus at 50–100°C for the PGPE‐PL/MMT composites measured by DMA increased with increasing MMT content until 15 wt % and decreased at 20 wt %. The tensile strength and modulus of the PGPE‐PL/MMT composites (MMT content 15 wt %: 42 and 5300 MPa) were much greater than those of the cured PGPE‐PL resin (4 and 6 MPa). Aerobic biodegradability of the PGPE‐PL in an aqueous medium was ~ 4% after 90 days, and the PGPE‐PL/MMT nanocomposites with MMT content 7–15 wt % showed lower biodegradability. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
In this work, poly(acrylamide‐co‐acrylic acid)/silica [poly(AM‐co‐AA)/SiO2] microspheres were prepared by inverse phase suspension polymerization in the presence of γ‐3‐(trimethoxysilyl) propyl methacrylate (or 3‐methacryloxypropyltrimethoxysilane) modified SiO2. The effects of SiO2 nanoparticles on tuning morphology and properties of the nanocomposite microspheres were studied. Plugging ability and oil displacement performance were also systematically investigated by single‐ and double‐tube sand pack models. The results showed that SiO2 nanoparticles can effectively adjust surface smoothness, swelling behavior, and thermal stability of the nanocomposite microspheres. Compared with pure copolymer microspheres, these nanocomposite microspheres also displayed better salt tolerance and shear resistance. Such multifunctional nanocomposite microspheres can provide effective plugging in the high‐permeability channels and can also achieve deep profile control. The highest plugging rate can be 86.11% and the oil recovery for low‐permeability tube was enhanced by 19.69%. This research will provide a candidate material for the further enhanced oil recovery (EOR) research and supply the theoretical support for profile control system in field application. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45502.  相似文献   

10.
Poly(4‐vinylpyridine) (P4VP) nanocomposites have been prepared by using an in situ polymerization method in the presence of organically modified montmorillonite (MMT) clays with a quarternary salt of cocoamine containing a vinyl group, as well as trimethoxy vinyl silane. The nanocomposites were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The desired exfoliated nanocomposite structure was achieved when the MMT modification was conducted in the presence of both modifiers, whereas individual modifications all resulted in intercalated structures. This resultant exfoliated nanocomposite was found to have better thermal stability and dynamic mechanical performance when compared to the other nanocomposites, even with 2 % clay loading. Copyright © 2005 Society of Chemical Industry  相似文献   

11.
The nanocomposite films comprising polymer blends of poly(vinyl alcohol) (PVA), poly(vinyl pyrrolidone) (PVP), poly(ethylene oxide) (PEO), and poly(ethylene glycol) (PEG) with montmorillonite (MMT) clay as nanofiller were prepared by aqueous solution casting method. The X‐ray diffraction studies of the PVA–x wt % MMT, (PVA–PVP)–x wt % MMT, (PVA–PEO)–x wt % MMT and (PVA–PEG)–x wt % MMT nanocomposites containing MMT concentrations x = 1, 2, 3, 5 and 10 wt % of the polymer weight were carried out in the angular range (2θ) of 3.8–30°. The values of MMT basal spacing d001, expansion of clay gallery width Wcg, d‐spacing of polymer spherulite, crystallite size L and diffraction peak intensity I were determined for these nanocomposites. The values of structural parameters reveal that the linear chain PEO and PEG in the PVA blend based nanocomposites promote the amount of MMT intercalated structures, and these structures are found relatively higher for the (PVA–PEO)–x wt % MMT nanocomposites. It is observed that the presence of bulky ester‐side group in PVP backbone restricts its intercalation, whereas the adsorption behavior of PVP on the MMT nanosheets mainly results the MMT exfoliated structures in the (PVA–PVP)–x wt % MMT nanocomposites. The crystallinities of the PEO and PEG were found low due to their blending with PVA, which further decreased anomalously with the increase of MMT concentration in the nanocomposites. The decrease of polymer crystalline phase of these materials confirmed their suitability in preparation of novel solid polymer nanocomposite electrolytes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40617.  相似文献   

12.
Polymeric nanocomposites were synthesized from functionalized soybean‐oil‐based polymer matrix and montmorillonite (MMT) clay using an in situ free radical polymerization reaction. Acrylated epoxidized soybean oil combined with styrene was used as the monomer. Organophilic MMT (OrgMMT) was obtained using a quaternized derivative of methyl oleate, which was synthesized from olive oil triglyceride, as a renewable intercalant. The resultant nanocomposites were characterized using X‐ray diffraction and atomic force microscopy. The effect of increased nanofiller loading on the thermal and mechanical properties of the nanocomposites was investigated using thermogravimetric analysis and dynamic mechanical analysis. It was found that the desired exfoliated nanocomposite structure was achieved when the OrgMMT loading was 1 and 2 wt%, whereas a partially exfoliated or intercalated nanocomposite was obtained for 3 wt% loading. All the nanocomposites were found to have improved thermal and mechanical properties as compared with virgin acrylated epoxidized soybean‐oil‐based polymer matrix. The nanocomposite containing 2 wt% OrgMMT clay was found to have the highest thermal stability and best dynamic mechanical performance. Copyright © 2010 Society of Chemical Industry  相似文献   

13.
It has been recognized that the incorporation of nanoscale montmorillonite (MMT) layers into polymer matrix enhances significantly the heat resistance of the resultant nanocomposites, especially for nylon‐6 (N6)/clay nanocomposites (NCNs). In the present work, the heat distortion temperature (HDT) of NCNs, including the intercalated N6/Na‐montmorillonite (Na‐MMT) and the exfoliated N6/organo‐montmorillonite (OMMT) ones, have been investigated for both non‐annealed and annealed testing specimens in comparison with the neat N6. As expected, the incorporation of MMT obviously improved HDT of NCNs, with the highest HDT value obtained in the N6/OMMT system due to its exfoliated nano‐structure. After an annealing treatment at 80°C for 6 hr, the HDT revealed noticeable increase for all the samples, particularly for the intercalated N6/Na‐MMT nanocomposite that showed the highest increment of 34°C. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and Fourier transform infrared (FTIR) techniques were employed to clarify the origin of the variation in HDT after annealing, and the results suggest that the increases in the crystallinity, the glass transition temperature, and the order degree of hydrogen bonding may account for the noticeable increases in the HDT of the nanocomposites after annealing. POLYM. ENG. SCI., 45:1247–1253, 2005. © 2005 Society of Plastics Engineers  相似文献   

14.
Na‐montmorillonite/polyethyleneimine‐g‐poly(methyl methacrylate) (Na‐MMT/PEI‐g‐PMMA) nanocomposite latexes were prepared by soap‐free emulsion polymerization in the aqueous suspension of Na‐MMT. The exfoliated morphology of the nanocomposites was confirmed by XRD and TEM. With the aim of improving morphology and mechanical properties of natural rubber latex (NRL) films, the synthesized Na‐MMT/PEI‐g‐PMMA nanocomposites were mixed with NRL by latex compounding technology. The results of SEM and AFM analysis showed that the surface of NRL/Na‐MMT/PEI‐g‐PMMA film was smoother and denser than that of pristine NRL film while Na‐MMT was dispersed uniformly on the fracture surface of the modified films, which suggested the good compatibility between NRL and Na‐MMT/PEI‐g‐PMMA. The tensile strength of NRL/Na‐MMT/PEI‐g‐PMMA films was increased greatly by 85% with 10 phr Na‐MMT/PEI‐g‐PMMA when Na‐MMT content was 3 wt % and the elongation at break also increased from 930% to 1073% at the same time. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43961.  相似文献   

15.
Heat ageing and thermal stability of a silicone rubber (SR) filled with montmorillonite clay (MMT) was investigated. Three types of rubber nanocomposites were prepared with highly exfoliated Cloisite 30B (SR/C30B), intercalated/exfoliated Cloisite Na+ (SR/Na+MMT), and highly intercalated Cloisite 20A (SR/C20A). This study showed that the SR/C30B nanocomposite exhibited excellent heat resistance in comparison to the other two nanocomposites and neat SR as revealed by higher retention strength. The thermal stability of the rubber in air was strongly dependent on the clay morphology and increased in the following order: highly intercalated/exfoliated SR/Na+MMT < highly intercalated SR/C20A < highly exfoliated SR/C30B. The thermogravimetric analyses of the SR/C30B nanocomposite showed a substantial increase in the final residue in comparison with the neat SR. This indicated a major improvement in the thermal stability of the rubber containing the exfoliated clay, which was also supported by the higher activation energy of decomposition measured for the nanocomposite. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41061.  相似文献   

16.
Summary: Styrene‐isoprene‐butadiene rubber/montmorillonite nanocomposites were synthesized by the addition of toluene into clay and living anionic polymerization. These silicate layers (B‐M) were exfoliated within 30 min after polymerization initiation, whereas the layers in the nanocomposites prepared without using toluene (A‐M) were only partially exfoliated and not well‐dispersed in the matrix. The results of TEM and X‐ray diffraction revealed disperse silicates and a strong interaction between the terpolymer matrix and clay in the B‐M nanocomposites. The B‐M‐exfoliated nanocomposites exhibited higher decomposition and glass transition temperatures, storage moduli, tensile strengths and elongations at the break than those of the pure terpolymer and A‐M. With an organophilic montmorillonite (OMMT) content of 3 wt.‐%, the exfoliated nanocomposite exhibited the best thermal stability and mechanical properties. In addition, GPC and 1H NMR results showed that the introduction of OMMT caused a slight increase in the of terpolymer, but hardly affected the microstructure of the terpolymer independent of the preparation method. Thus, the addition of toluene plays an important role in enhancing the dispersion of OMMT, which leads to the improvement of the structure and properties of the B‐M nanocomposites.

TEM image of the SIBR/MMT nanocomposite.  相似文献   


17.
Ethylene–propylene–diene terpolymer (EPDM)/silicone blend nanocomposites are prepared by solution method for the first time. EPDM and silicone rubber in their 50:50 (by weight) blend is intercalated within the silicate sheets of organically modified montmorillonite. Organic modification to the pristine sodium montmorillonite (Na‐MMT) surfaces is carried out by ion‐exchange reaction using hexadecyl ammonium chloride. The incorporation of such organic functional group makes Na‐MMT hydrophobic and expands the interlayer spacing between silicate sheets. The intercalated structure of EPDM/silicone blend nanocomposites is characterized by the X‐ray diffraction. Transmission electron microscopic characterization visualized the presence of both exfoliated and intercalated layered silicate in the polymer nanocomposites. The mechanical properties of the nanocomposites show a maximum improvement in tensile strength and elongation at break of 23 and 68%, respectively, compared with EPDM/silicone blend. The dielectric measurement demonstrates the increase in relative permittivity for the nanocomposite than the pure blend. The increase in the onset temperature of the thermal degradation of nanocomposites (∼52°C) corresponding to 1 wt% decomposition indicates the enhancement of thermal stability of (EPDM)/silicone blend due to interaction with silicates. POLYM. COMPOS., 35:1834–1841, 2014. © 2014 Society of Plastics Engineers  相似文献   

18.
The main objective of this study was to synthesize and characterize the properties of ethylene–propylene–diene terpolymer (EPDM)/clay nanocomposites. Pristine clay, sodium montmorillonite (Na+–MMT), was intercalated with hexadecyl ammonium ion to form modified organoclay (16Me–MMT) and the effect of intercalation toward the change in interlayer spacing of the silicate layers was studied by X‐ray diffraction, which showed that the increase in interlayer spacing in Na+–MMT by 0.61 nm is attributed to the intercalation of hexadecyl ammonium ion within the clay layers. In the case of EPDM/16Me–MMT nanocomposites, the basal reflection peak was shifted toward a higher angle. However, gallery height remained more or less the same for different EPDM nanocomposites with organoclay content up to 8 wt %. The nanostructure of EPDM/clay composites was characterized by transmission electron microscopy, which established the coexistence of intercalated and exfoliated clay layers with an average layer thickness in the nanometer range within the EPDM matrix. The significant improvement in thermal stability and mechanical properties reflects the high‐performance nanocomposite formation. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2429–2436, 2004  相似文献   

19.
Two types of modified montmorillonite (MMT) were achieved using octadecylamine as the modifying agent by the methods of dry process and wet route. Polypropylene (PP)/MMT nanocomposites were prepared using the melt mixing technique and employing maleic anhydride‐grafted polypropylene (PP‐MA) as the compatibilizer. The modification of montmorillonite was characterized by fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), and scanning electron microscope (SEM). The effect of MMT modification and PP‐MA on the microstructure and properties of PP/MMT nanocomposites was investigated by SEM, differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and polarizing microscopy. The results show that organic montmorillonite modified by wet process (WOMMT) has a large d‐spacing increment; whereas montmorillonite modified by dry process (DOMMT) shows little d‐spacing increment. Furthermore, the mechanical properties of composites incorporating WOMMT are better than that containing DOMMT. As a third component, the addition of PP‐MA benefits the formation of exfoliated structure and the dispersion of MMT in PP matrix, and hence, enhances the physical properties of the nanocomposite. With the presence of PP‐MA, the highly dispersed MMT increases the number of spherulite crystals, enhances the melting enthalpy, improves the thermal stability, and induces the desired tiny crazes more effectively. MMT increases the storage modulus (E′) and glass‐transition temperature (Tg) of PP because of the stiffness of MMT layers, but PP‐MA decreases them owing to its high melt flow index, both of which were in favor of improving the physical properties. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3952–3960, 2013  相似文献   

20.
The synthesis and properties of comb‐like polymer‐graphene nanocomposites via surface initiated atom transfer radical polymerization is reported. The crystallization temperature (Tc) and melt temperature (Tm) of the comb‐like homopolymer increases from −18 to −8 °C and 1 to 11 °C, respectively, in the nanocomposite synthesized with 0.6 wt % graphene initiator. The rheological properties like modulus and complex viscosity of the nanocomposite show a twofold increase. Transmission electron microscopy results of the nanocomposite show a well‐intercalated structure with nanoscale distribution of graphene domains and in scanning electron microscopy a sheet‐like structure with corrugations, and crumples are seen. The hydrophobicity, as measured by water contact angle, increases from 101° in the homopolymer to 118° in the nanocomposite. The nanocomposites exhibit substantial increase in adhesive strength on different substrates, with peel strength increasing by more than 1000 times, as compared to the homopolymer. The improved tack and adhesion properties of the nanocomposites suggest them as novel materials for adhesive applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45885.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号