首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polypropylene/carbon nanotube/exfoliated graphite nanoplatelet (PP/CNT/xGnP) composites have been fabricated to evaluate their electromagnetic interference shielding effectiveness (EMI SE) and soundproofing. An EMI SE of 36.5 dB at 1250 MHz was measured for the 80/10/10 wt % PP/CNT/xGnP composite; its sound transmission loss was more than 5 dB higher than that for pure PP at low frequencies (520–640 Hz). These results indicate simultaneous EMI SE and soundproofing. Transmission electron microscopy was used to study the microstructure and to probe synergetic effects between the CNTs and xGnPs. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3947–3951, 2013  相似文献   

2.
Hyperbranched polymers have been found effective in controlling the dispersibility of carbon nanotubes in aqueous solutions. In this study, hyperbranched polylysine (HBPL) was synthesized using lysine and N,N′‐methylenebisacrylamide as precursors via Michael addition. The HBPL then was used to noncovalently modify multiwalled carbon nanotubes (MWCNTs) to prepare MWCNTs‐HBPL. The obtained MWCNTs‐HBPL composites were characterized using FTIR spectroscopy, Raman spectroscopy, thermogravimetric analysis, and scanning electron microscopy. The results showed that the HBPL was successfully attached to the surface of MWCNTs via noncovalent interactions. The dispersibility of the MWCNTs‐HBPL composites in aqueous solutions was investigated using digital photographs, ultraviolet–visible absorption spectroscopy, and zeta potential measurements. The results demonstrated that both the mass ratio of MWCNT to HBPL and the pH of the solution had a significant impact on the dispersibility of the MWCNTs/HBPL solution, suggesting that HBPL treatment is an effective method of controlling the dispersibility of MWCNTs in aqueous solutions. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46249.  相似文献   

3.
Cotton fabrics with multiwalled carbon nanotubes (MWCNTs) dispersed by Nafion, a polyelectrolyte, and sodium dodecyl benzene sulfonate (SDBS), a surfactant, were prepared for electromagnetic interference (EMI) shielding. The fabrics were characterized by scanning electron microscopy and vector network analysis. The fabrics with the Nafion–MWCNT coating possessed a better shielding efficiency (SE) than those with the SDBS–MWCNT coating because of a more uniform dispersion of MWCNTs, which improved the electrical conductivity and EMI shielding properties. The maximum SE value of the fabric reached 11.48 dB, and the specific SE was 39.6 dB cm3/g. The reflectivity and absorptivity were calculated separately to determine the main mechanism of EMI shielding. The absorptivity was 68.6% at 12 GHz for the Nafion–MWCNT‐coated fabric; this showed that the dominant mechanism of EMI shielding for the treated fabrics was absorption. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40588.  相似文献   

4.
A novel electrophoretic deposition (EPD) method was employed for grafting multiwalled carbon nanotubes (MWCNTs) on carbon fibers, which, after impregnation with bisphenol A dicyanate ester (BADCy), synergistically reinforced BADCy matrix composites (CNT‐C/BADCy). The effect of MWCNT presence on the mechanical properties of the composites was investigated. Composite tensile strength increased by 45.2% for an EPD duration of 2 min, while flexural strength exhibited a decreasing trend with EPD duration. Optical microscopy revealed that the existence of MWCNTs enhanced the fiber‐matrix interface while a large number of CNTs were observed to have pulled‐out from the matrix, a finding which explained the observed tensile strength increase in terms of energy dissipation by the specific toughening mechanism. The flexural strength decrease of the composites with CNTs as compared to specimens without nanotubes was found linked to the increased stress concentration in the BADCy matrix due to tube presence which weakens the adhesion between carbon fabrics. In a word, carbon nanotubes will enhance the micro interface and weaken the macro interface of the composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45100.  相似文献   

5.
Using conventional mixing techniques, the mechanical properties of prepared carbon nanotube (CNT)/polymer composites are not impressive enough, because of their aggregation problem at a high loading of CNTs. In this article, high mechanical performance ultrahigh molecular weight polyethylene (UHMWPE) nanocomposites with high loading of multiwalled CNTs were successfully fabricated by a new manufacturing technique. Specifically, the tensile strength and storage modulus at 25 °C of UHMWPE nanocomposites with 32 wt % of nanotubes prepared by the novel technique reaches 107.6 MPa and 6.0 GPa, respectively, about 4.7 times and 5.0 times of that of pure UHMWPE resin, which are also very high experimental results compared with polyethylene nanocomposite prepared by traditional hot-compression techniques. These attractive results suggest that the high-loading CNTs without sacrificing their dispersion and the impregnation quality of polymer-impregnated buckypapers are essential for fabricating CNTs/polymer composites with superior mechanical properties. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48667.  相似文献   

6.
High reliability and high-performance electromagnetic interference (EMI) shielding polymeric composite was fabricated by introducing carbon nanotube films (CNTf) into an epoxy (EP) matrix as mechanical and EMI shielding reinforcement simultaneously. According to the computed tomography (CT) detection recorded by a high-speed camera, CNTf exhibited excellent mechanical behavior and good energy absorption. While being introduced into laminated EP composite, the CNTf enhanced both the mechanical performance and EMI shielding performance. The damage mechanism of CNTf/EP was studied by CT detection of the impact process, indicating that the CNTf absorbed the impact energy by improving the delamination resistance. Additionally, the multilayered CNTf can trap and attenuate the entered electromagnetic microwaves by repeated adsorption, reflection, and scattering in the composite, resulting in excellent EMI shielding performance. Consequently, the energy absorption and the total shielding effectiveness of the CNTf/EP reached to 4.58 × 10−3 J and 52.31 dB, respectively. Therefore, we demonstrated that the CNTf was an ideal functional reinforcement for mechanically strong and high-performance EMI shielding polymeric composites and the CNTf reinforced EP composite is promising in practical EMI-shielding applications.  相似文献   

7.
This study uses the solution mixing method to combine plasticized polyvinyl alcohol (PVA) as a matrix, and multiwalled carbon nanotubes (MWCNTs) as reinforcement to form PVA/MWCNTs films. The films are then laminated and hot pressed to create PVA/MWCNTs composites. The control group of PVA/MWCNTs composites is made by incorporating the melt compounding method. Diverse properties of PVA/MWCNTs composites are then evaluated. For the experimental group, the incorporation of MWCNTs improves the glass transition temperature (Tg), crystallization temperature, Tc), and thermal stability of the composites. In addition, the test results indicate that composites containing 1.5 wt % of MWCNTs have the maximum tensile strength of 51.1 MPa, whereas composites containing 2 wt % MWCNTs have the optimal electrical conductivity of 2.4 S/cm, and electromagnetic shielding effectiveness (EMI SE) of ?31.41 dB. This study proves that the solution mixing method outperforms the melt compounding method in terms of mechanical properties, dispersion, melting and crystallization behaviors, thermal stability, and EMI SE. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43474.  相似文献   

8.
Glass fiber/epoxy resin composites (GF/EP) using one and three multi-walled carbon nanotube buckypapers (BP) were obtained and their complex parameters, reflectivity, and electromagnetic interference (EMI) shielding effectiveness (SE) at X-band (8.2–12.4 GHz) and Ku-band (12.4–18 GHz) were evaluated. The preparation of BP used polyacrylonitrile (PAN) nanofibers (PF These composites show both large storage and energy loss capacity in both bands revealing promising results related to EMI SE applications. Besides, a high attenuation of around 67% and 72% were achieved for BP based composites. The cross-section view of the buckypaper and the laminates was analyzed by scanning electron microscopy (SEM). The incorporation of the CNT film into the laminates showed no improvements in the elastic properties through dynamic mechanical analyses (DMA). Nevertheless, a decrease in the shear properties by the compression shear test (CST) and interlaminar shear strength (ILSS) has been observed. GF/EP/BP/PF composite presented a reduction of 29 and 39% in its ILSS properties compared to the base laminate (GF/EP). Also, the decrease was even more significant, revealing a steep reduction in its CST properties. On the other hand, the removal of the pan nanofiber (PF) led to better mechanical properties for GF/EP/BP/RPF composites. Results have shown ILSS values of 47.4 ± 2.2 MPa which are close to the base laminate (52.4 ± 3.1 MPa). The removal of the PF provided larger porous in the CNT network, making the impregnation by epoxy easier in the BP/RPF which resulted in improved shear properties compared to GF/EP/BP/PF samples.  相似文献   

9.
The purpose of this study was to investigate the influence of aging on the properties of high-density polyethylene (HDPE) reinforced with multi-wall carbon nanotubes (MWCNTs). Nanocomposites were prepared with nanotubes at 0, 1, 3, and 5 wt%. The long-term durability of the prepared materials was evaluated by thermo-oxidative aging test. Test bodies were aged at 110°C for up to 10 weeks. The nanocomposites were characterized by differential scanning calometry, thermogravimetric analysis (TGA), 13C-NMR, elongation at break, and transmission electron microscopy. The aging mainly occurred on the surface of the samples and the neat HDPE showed a strong yellowing after the aging. A strong reduction in elongation at break was seen. For neat HDPE, the elongation at break was reduced from roughly 1400–25%. When HDPE was reinforced with the nanotubes, the reduction was less dramatic.  相似文献   

10.
We describe a simple and novel method for dispersing multiwalled carbon nanotubes (MWCNTs) in a flexible epoxy matrix. The MWCNTs were modified with half‐neutralized dicarboxylic acids having different numbers of carbon atoms. The modified MWCNTs were prereacted with epoxy in the presence of triphenylphosphine. The dispersion of the MWCNTs and the enhancement in the tensile properties were found to be better for composites prepared with a solvent. Among the half‐neutralized dicarboxylic acids used, half‐neutralized adipic acid (HNAA) exhibited the best performance. Scanning electron microscopy and transmission electron microscopy studies clearly indicated an improvement in the level of dispersion of the MWCNTs with the addition of the modifier. The good dispersion of the MWCNTs and the resulting improvement in their properties were attributed to the cation–π interactions (the cation of HNAA and the π‐electron clouds of the MWCNTs) between the HNAA and MWCNTs and the chemical bonding of ? COOH groups of HNAA and the epoxy resin. The cation–π interaction and chemical bonding was assessed with Fourier transform infrared spectroscopy and Raman spectroscopy. This approach did not destroy the π–electron clouds of the MWCNTs in contrast to a chemical functionalization strategy. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2610–2618, 2013  相似文献   

11.
The quasi‐static fracture and dynamic fatigue behaviors of natural rubber composites reinforced with hybrid carbon nanotube bundles (CNTBs) and carbon black (CB) at similar hardness values were investigated on the basis of fracture mechanical methods. Mechanical measurement and J‐integral tests were carried out to characterize the quasi‐static fracture resistance. Dynamic fatigue tests were performed under cyclic constant strain conditions with single‐edged notched test pieces. The results indicate that synergistic effects between CNTBs and CB on the mechanical properties, fracture, and fatigue resistance were obtained. The composite reinforced with 3‐phr CNTBs displayed the strongest fatigue resistance. The synergistic mechanisms and dominating factors of quasi‐static and dynamic failure, such as the dispersion state of nanotubes, hybrid filler network structure, strain‐induced crystallization, tearing energy input, and viscoelastic hysteresis loss, were examined. The weakest fatigue resistance of the composite filled with 5‐phr CNTBs was ascribed to its strikingly high hysteresis, which resulted in marked heat generation under dynamic fatigue conditions. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42075.  相似文献   

12.
Electromagnetic interference (EMI) is an increasingly severe issue in modern life and high-performance EMI shielding materials are in desperate need. To achieve high EMI shielding effectiveness (EMI SE), a series of polybenzoxazine/graphene composites foams are developed using a simple sol–gel method. When the graphene loading increases from 1 to 20 wt%, the density of the composites foams drops from 0.4143 g/cm3 to 0.1654 g/cm3. Meanwhile, an electrically conductive path is formed at around 7 wt% of graphene. Below the percolation threshold, the dielectric constant increases with graphene content and composite foam with 5 wt% graphene shows dielectric constant of 10.8 (1 MHz). At the highest graphene content of 20 wt%, the electric conductivity reaches 0.02 S/cm, 10 orders of magnitude higher than pure polybenzoxazine foam. Benefiting from the high electrical conductivity and lightweight porous structure, the composite foam PF/20G delivers an EMI SE of 85 dB and a specific SE of 513.9 dB·cm3/g. Importantly, the EMI shielding is dominated by absorption attenuation, with PF/20G shows absorption ratio higher than 98% in the range of 8.4–11.0 GHz, which is believed to be caused by multiple internal reflection and absorption inside the conductive foam.  相似文献   

13.
The incorporation of silane treated multiwalled carbon nanotubes (S‐MWCNTs) is used as an effective path for tailoring thermomechanical properties of ethylene propylene diene monomer (EPDM). In this study, S‐MWCNTs were introduced into EPDM using internal dispersion kneader and two roller mixing mill. By altering the mass ratio of S‐MWCNTs from 0 to 1, thermal conductivity, thermal stability and phase transition temperatures and their respective enthalpies are discussed of the fabricated nanocomposites. It is observed that silane modification improves their dispersion and increases the interfacial bonding between MWCNTs and polymer matrix. Scanning electron microscopy along energy dispersive spectroscopy analysis is performed to confirm the silane functionalized MWCNTs are selectively distributed in the host polymer. More importantly, an important increase in mechanical properties like ultimate tensile strength and hardness is achieved through introducing silane functionalized MWCNTs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43221.  相似文献   

14.
Composite membranes of functionalized (–COOH, –CONH2, –N3) carbon nanotubes/polysulfone (CNT/PS) synthesized by the phase‐inversion method show unique properties with respect to surface characteristics and the selective separation of metal ions from aqueous solution. Apart from the reduction in the pore size depending on the type of functionalities on the nanotubes, the pure water permeation could reach up to as high as ~600 L m?2 h?1 (LMH) at reduced pressures and could be due to the functionalized tips of the nanotubes on the membrane surface resulting from the phase inversion process used for the membrane fabrication. The membranes were characterized by small angle neutron scattering (SANS) to confirm the uniform distribution of the nanopores and the surface morphology of the membranes. Results show that rejection of Cu(II) was better than Pb(II) depending on the surface functionality. Interestingly, these membranes also showed enhanced conductivities in the range of 1.0 × 10?2 S cm?1, the conductivity depending on the type of functionality on the nanotubes, thus confirming the presence of functionalized nanotubes tips on the membrane surface. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43778.  相似文献   

15.
In this study, polysulfone (PSf)/silver‐doped carbon nanotube (Ag‐CNT) nanocomposite membranes were prepared by a phase‐inversion technique; they were characterized and evaluated for fouling‐resistant applications with bovine serum albumin (BSA) solutions. Carbon nanotubes were doped with silver nanoparticles via a wet‐impregnation technique. The prepared Ag‐CNT nanotubes were characterized with scanning electron microscopy (SEM)/energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, Raman spectroscopy, and thermogravimetric analysis. The fabricated flat‐sheet PSf/Ag‐CNT nanocomposite membranes with different Ag‐CNT loadings were examined for their surface morphology, roughness, hydrophilicity, and mechanical strength with SEM, atomic force microscopy, contact angle measurement, and tensile testing, respectively. The prepared composite membranes displayed a greater rejection of BSA solution (≥90%) and water flux stability during membrane compaction with a 10% reduction in water flux values (up to 0.4% Ag‐CNTs) than the pristine PSf membrane. The PSf nanocomposite membrane with a 0.2% Ag‐CNT loading possessed the highest flux recovery of about 80% and the lowest total membrane resistance of 56% with a reduced irreversible fouling resistance of 21%. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44688.  相似文献   

16.
The synergetic effect of multiwalled carbon nanotubes (MWNTs) and carbon fibers (CFs) in enhancing the electrical conductivity of nylon 6 (PA6) composites was investigated. To improve the compatibility between the fillers and the PA6 resin, we grafted γ‐aminopropyltriethoxy silane (KH‐550) onto the MWNTs and CFs after carboxyl groups were generated on their surface by chemical oxidation with nitric acid. Fourier transform infrared spectroscopy and thermogravimetric analysis proved that the KH‐550 molecules were successfully grafted onto the surface of the MWNTs and CFs. Scanning electron microscopy and optical microscopy showed that the obtained modified fillers reduced the aggregation of fillers and resulted in better dispersion and interfacial compatibility. We found that the electrical percolation threshold of the MWNT/PA6 and CF/PA6 composites occurred when the volume fraction of the fillers were 4 and 5%, respectively. The MWNT/CF hybrid‐filler system exhibited a remarkable synergetic effect on the electrically conductive networks. The MWNT/7% CF hybrid‐filler system appeared to show a second percolation when the MWNT volume fraction was above 4% and a volume resistivity reduction of two orders of magnitude compared with the MWNT/PA6 system. The mechanical properties of different types of PA6 composites with variation in the filler volume content were also studied. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40923.  相似文献   

17.
In this study, phosphorus-modified titania nanotubes (CH/PT-TNTs) were obtained through the layer-by-layer assembly using titanium dioxide nanotubes (TNTs), Chitosan (CH) and synthetic phosphatized chitin (PT). Subsequently, CH/PT-TNTs were incorporated into epoxy resin (EP) to improve the fire safety of epoxy resin. The results of TEM, FTIR, and XPS demonstrated that CH/PT coating was successfully constructed on the surface of TNTs. According to the results of Cone, the addition of CH/PT-TNTs induced a significant improvement on the flame retardancy of EP, with only 2 wt% addition resulted in a remarkable reduction of peak heat release rate (48.8%) and total heat release (42.1%) compared to the pure EP, which is superior to TNTs at the same amount of addition. Moreover, the results of Raman spectroscopy indicated that the CH/PT coating helps to increase the degree of graphitization of the carbon layer. A possible flame-retardant mechanism has been speculated on the synergistic effect between the CH/PT coating and the TNTs. Therefore, it is an effective method to improve the fire safety of epoxy resin, which provides a new idea for developing new environmentally friendly flame-retardant epoxy resins.  相似文献   

18.
The surface chemistry and structure of multiwalled carbon nanotube (MWCNT) plays an important role in MWCNT/epoxy nanocomposites. In this contribution, oxidized multiwalled carbon nanotube (OMCNT) with tunable oxygen-containing groups is prepared by finely controlling oxidation time and centrifugal speeds. Effects of oxygen-containing group content on mechanical properties of the OMCNT/E51 epoxy nanocomposites at 77 K are investigated in detail. It reveals that oxygen-containing groups on the OMCNT surface contribute to significant increases in tensile strength and impact resistance of the OMCNT/E51 epoxy nanocomposites compared with those of the pristine MWCNT/E51 nanocomposites. A positive correlation between the oxygen-containing group content and interfacial properties of OMCNT and epoxy matrix is demonstrated by thermogravimetric analysis and fracture morphology, and homogeneous dispersion of the OMCNT in epoxy matrix is obtained with the increase of oxygen-containing groups on surface of the OMCNT. However, proper content of oxygen-containing groups is essential to OMCNT/E51 nanocomposites because excessive oxidation tends to make sever structural defects on the OMCNT and has a side effect on cryogenic mechanical properties of OMCNT/E51 nanocomposites.  相似文献   

19.
Poly(methyl methacrylate)/multiwalled carbon nanotubes (PMMA/MWCNT) composites were prepared by two different methods: melt mixing and solution casting. For solution casting, two different solvents, toluene and chloroform, were used to prepare PMMA solutions with different concentrations of MWCNT. The dispersion of the CNT in the composite samples was verified by scanning electron microscopy. For the nanocomposites prepared by both methods, the electrical conductivity increased with increasing filler content, showing typical percolation behavior. In addition, an increase of 11 orders of magnitude in the electrical conductivity relative to the matrix conductivity was determined by broadband dielectric spectroscopy and four probe conductivity measurements. A maximum value of σDC ~ 1.6 S/cm was found for the highest filler loaded sample (3.67 vol %), which was prepared by solution casting from toluene. Nanoindentation analysis was used to characterize the surface mechanical properties of the composite samples prepared by the different methods. Indentation tests were performed at various penetration depths, and it was revealed that the melt mixing process resulted in stiffer neat PMMA samples compared to the solution casted PMMA samples. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41721.  相似文献   

20.
This work concerns the fatigue behavior at three different temperature conditions (−40, 20, and 80°C) and the addition of multiwalled carbon nanotube (MWCNT) into a carbon-fiber reinforced poly(ether-imide) composite. The incorporation of MWCNT into the composite increased the tensile strength and Young's modulus by up 5 and 2%, respectively. At low temperature, the incorporation of the nanoparticles improved the fatigue strength of the laminates by 15%. The shear strength results obtained by interlaminar shear strength and compression shear test tests have shown an increase of about 16 and 58%, respectively, by the introduction of nanotubes into the laminates. Fractographic observations revealed that the surface of carbon nanotube laminate (PEI/MWCNT/CF) presented a ductile behavior, and differences in the fracture aspects of the material compared to the traditional PEI/CF laminate have been observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号