首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comprehensive understanding of carboxymethyl chitosan (CMC)-based mixed matrix membrane (MMM) has been critically investigated. The present work elaborates the compatibility of hydrotalcite (HT) and CMC in terms of CO2 separation application. Various spectroscopic and microscopic techniques have been utilized to characterize the respective properties of the prepared membrane. The temperature stability and moisture retention behavior of the membrane recognized itself as the flue gas separation membrane. The CO2/N2 separation experiment was performed on the MMM at different temperature (60–110 °C) and sweep/feed water flow to the saturator ratio (0.33 to 3). The membrane exhibited the optimum CO2 permeance of 70 GPU at 90°C pertaining to water flow ratio of 2.33 (sweep/feed). The CO2/N2 selectivity observed at that same operating condition was 13. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48715.  相似文献   

2.
Composite layer containing postmodified MIL‐53 (P‐MIL‐53) was exploited to be coated on as‐fabricated asymmetric hollow fiber membrane for improving gas separation performance. The morphology and pore size distribution of P‐MIL‐53 particles were characterized by SEM and N2 adsorption isotherm. The EDX mapping and FTIR spectra were performed to confirm the presence of P‐MIL‐53 deposited on the outer surface of hollow fiber membranes. The results of pure gas permeation measurement indicated that incorporation of P‐MIL‐53 particles in coating layer could improve permeation properties of hollow fiber membranes. By varying coating times and P‐MIL‐53 content, the membrane coated with PDMS/15%P‐MIL‐53 composite by three times achieved best performance. Compared to pure PDMS coated membrane, CO2 permeance was enhanced from 29.96 GPU to 40.24 GPU and ideal selectivity of CO2/N2 and CO2/CH4 also increased from 23.28 and 26.95 to 28.08 and 32.03, respectively. The gas transport through composite membrane was governed by solution‐diffusion mechanism and CO2 preferential adsorption of P‐MIL‐53 contributed to considerable increase of CO2 solubility resulting in accelerated permeation rate. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44999.  相似文献   

3.
A vinyl amine–vinyl alcohol copolymer (VAm–VOH) was synthesized through free‐radical polymerization, basic hydrolysis in methanol, acidic hydrolysis in water, and an anion‐exchange process. In the copolymer, the primary amino groups on the VAm segment acted as the carrier for CO2‐facilitated transport, and the vinyl alcohol segment was used to reduce the crystallinity and increase the gas permeance. VAm–VOH/polysulfone (PS) composite membranes for CO2 separation were prepared with the VAm–VOH copolymer as a selective layer and PS ultrafiltration membrane as a support. The membrane gas permselectivity was investigated with CO2, N2, and CH4 pure gases and their binary mixtures. The results show that the CO2 transport obeyed the facilitated transport mechanism, whereas N2 and CH4 followed the solution–diffusion mechanism. The increase in the VAm fraction in the copolymer resulted in a carrier content increase, a crystallinity increase, and intermolecular hydrogen‐bond formation. Because of these factors, the CO2 permeance and CO2/N2 selectivity had maxima with the VAm fraction. At an optimum applied pressure of 0.14 MPa and at an optimum VAm fraction of 54.8%, the highest CO2 permeance of 189.4 GPU [1 GPU = 1 × 10?6 cm3(STP) cm?2 s?1 cmHg?1] and a CO2/N2 selectivity of 58.9 were obtained for the CO2/N2 mixture. The heat treatment was used to improve the CO2/N2 selectivity. At an applied pressure of 0.8–0.92 MPa, the membrane heat‐treated under 100°C possessed a CO2 permeance of 82 GPU and a CO2/N2 selectivity of 60.4, whereas the non‐heat‐treated membrane exhibited a CO2 permeance of 111 GPU and a CO2/N2 selectivity of 45. After heat treatment, the CO2/N2 selectivity increased obviously, whereas the CO2 permeance decreased. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40043.  相似文献   

4.
In this work, ether oxide (EO)-based multilayer composite membranes were prepared via interfacial polymerization (IP) of trimesoyl chloride (TMC) and polyetheramine (PEA) on polydimethylsiloxane precoated polysulfone support membrane. The effects of preparation parameters, such as monomer concentrations, reaction time, and heat-treatment temperature on the membrane performance were investigated. The optimal preparation parameters have been concluded. The results showed the increasing monomers concentration of both PEA and TMC can lead to the decrease of CO2 permeance and increase of CO2/N2 selectivity. The optimal monomers concentration was found. When monomer concentrations are higher than the optimal values, the CO2 permeance decreases continually while CO2/N2 selectivity only shows a very limited improvement with the further increase of monomers concentration. The reaction time has similar effects on membrane performance as the monomers concentration. The effect of heat-treatment temperature was also studied. With the increasing heat-treatment temperature, the CO2 permeance shows a decrease tendency, while the CO2/N2 selectivity shows a maximum at 80 °C. When PEA is 0.013 mol L−1, TMC is 0.020 mol L−1, reaction time is 3 min, and heat-treatment temperature is 80 °C, the optimum preparation conditions are achieved with CO2 permeance of 378.3 gas permeation unit (GPU) and CO2/N2 selectivity of 51.7 at 0.03 MPa. This work may help to design and fabricate gas separation membranes with desired performance. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47755.  相似文献   

5.
A solid amine adsorbent was prepared by modifying a porous polystyrene resin (XAD‐4) with chloroacetyl chloride through a Friedel–Crafts acylation reaction, followed by aminating with tetraethylenepentamine (TEPA). The adsorption behavior of CO2 from a simulated flue gas on the solid amine adsorbent was evaluated. Factors that could determine the CO2 adsorption performance of the adsorbents such as amine species, adsorption temperature, and moisture were investigated. The experimental results showed that the solid amine adsorbent modified with TEPA (XAD‐4‐TEPA), which had a longer chain, showed an amine efficiency superior to the other two amine species with shorter chains. The CO2 adsorption capacity decreased obviously as the temperature increased because the reaction between CO2 and amine groups was an exothermic reaction, and its adsorption amount reached 1.7 mmol/g at 10 °C in dry conditions. The existence of water could significantly increase the CO2 adsorption amount of the adsorbent by promoting the chemical adsorption of CO2 on XAD‐4‐TEPA. The adsorbent kept almost the same adsorption amount after 10 cycles of adsorption–desorption. All of these results indicated that amine‐functionalized XAD‐4 resin was a promising CO2 adsorbent. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45046.  相似文献   

6.
Complete CO2/CH4 gas separation was aimed in this study. Accordingly, asymmetric neat polysulfone (PSF) and PSF/polyvinylpyrrolidone (PVP) blend membranes were prepared by wet/wet phase inversion technique. The effects of two different variables such as type of external nonsolvent and type of solvent on morphology and gas separation ability of neat PSF membranes were examined. Moreover, the influence of PVP concentration on structure, thermal properties, and gas separation properties of PSF/PVP blend membrane were tested. The SEM results presented the variation in membrane morphology in different membrane preparation conditions. Atomic forced microscopic images displayed that surface roughness parameters increased significantly in higher PVP loading and then gas separation properties of membrane improved. Thermal gravimetric analysis confirms higher thermal stability of membrane in higher PVP loading. Differential scanning calorimetric results prove miscibility and compatibility of PSF and PVP in the blend membrane. The permeation results indicate that, the CO2 permeance through prepared PSF membrane reached the maximum (275 ± 1 GPU) using 1‐methyl‐2‐pyrrolidone as a solvent and butanol (BuOH) as an external nonsolvent. While, a higher CO2/CH4 selectivity (5.75 ± 0.1) was obtained using N‐N‐dimethyl‐acetamide (DMAc) as a solvent and propanol (PrOH) as an external nonsolvent. The obtained results show that PSF/PVP blend membrane containing 10 wt % of PVP was able to separate CO2 from CH4 completely up to three bar as feed pressure. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1139‐1147, 2013  相似文献   

7.
Polydimethylsiloxane/polyethersulfone (PDMS/PES) asymmetric membranes are widely applied in gas separation. However, the effects of common cosolvent on these membranes remain unknown. In order to study the changes in membrane morphology and gas separation properties, asymmetric PDMS/PES membranes were prepared. The studied parameters were types of cosolvents, tetrahydrofuran (THF) concentration, evaporation time, and PDMS concentration. Membrane morphology was examined using scanning electron microscopy and gas separation was conducted using pure CO2, N2, CH4, and Hat 25°C. The addition of cosolvent into the polymer solution decreased the dope viscosity and delayed liquid–liquid demixing during phase inversion. Macrovoids formation was observed in substructure layer after adding THF and these macrovoids elongated with the reduction in THF content. There were microvoids formed on top of macrovoids and microvoids layer became thicker due to the increasing evaporation time of solvents before coagulation in nonsolvent. The PDMS coating on the PES membrane formed a dense skin layer and exhibited higher selectivity compared to the uncoated membrane. Membrane contained THF cosolvent with 60 s evaporation time and 3 wt% coated PDMS is the optimum membrane among other membranes in this work. The CO2/N2 selectivity was enhanced by 73.3% with CO2 permeance of 44.86 GPU. POLYM. ENG. SCI., 54:2177–2186, 2014. © 2013 Society of Plastics Engineers  相似文献   

8.
P84 polyimide membranes with thicknesses ranging from 6 to 310 μm were successfully fabricated by spin coating. The glass transition temperature of the P84 powder was found to be 315°C using differential scanning calorimetry, whereas its decomposition temperature was 536°C using thermogravimetric analysis. Scanning electron microscopy was used to examine the morphology of the membranes. The permeability of single gas (He, N2, O2, and CO2) and the ideal selectivity of gas pair (O2/N2, He/CO2, CO2/N2, and He/O2), as a function of membrane thickness, were determined. The results showed that the permeability of a single gas increased with increasing membrane thickness, whereas the selectivity of a given gas pair was nearly independent of the membrane thickness. The average selectivity of O2/N2, He/CO2, CO2/N2, and He/O2 were found to be 8.2, 10.0, 12.9, and 15.8, respectively. The effects of heat treatment on the membrane morphology and gas transport properties were investigated for three annealing temperatures, i.e., 80°C, 200°C, and 315°C. The membrane annealed at 315°C was cracked due to the stress sustained either during heating or cooling, thereby resulting in little or no selectivity. The permeabilities of P84‐118 membrane (118 μm thickness) annealed at 80°C were 16.2, 0.196, 1.20, and 2.01 Barrer for He, N2, O2, and CO2, respectively. The permeabilities of P84‐118 membrane annealed at 200°C decreased by 9.75%, 47.96%, 25.83%, and 30.85% for He, N2, O2, and CO2, respectively, as compared with those at 80°C, whereas the ideal selectivities increased by 42.65%, 30.52%, 32.85%, and 21.63% for O2/N2, He/CO2, CO2/N2, and He/O2, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Sulfur dioxide (SO2) is the major air pollutant which is emitted from the power plant. In this study, hollow fiber membrane (HFM) separation process is applied for the improvement of SO2 removal efficiency in the post‐combustion gas. HFM was produced by dry/wet phase inversion method and then coated with Polydimethylsiloxane (PDMS). The membrane morphology and characterization were examined with help of scanning electron microscope (SEM), energy dispersion of X‐ray spectroscopy (EDX), Fourier transform infrared (FT‐IR) and atomic force microscopy (AFM). Polyethersulfone (PES) hollow fiber membranes were tested for the SO2/N2 binary mixed gas separation. Single gas permeance of SO2, N2, and binary mixture gas (200 ppm of SO2) separation experiment was initiated to observe membrane behavior according to temperature and pressure difference and retentate flow rate. As a result, permeance of SO2 was 24.9–47.4 GPU and selectivity of SO2/N2 was 1.6–4.2. From the mixture gas separation experiment, SO2 removal efficiency increased according to stage cut and operating pressure. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39711.  相似文献   

10.
Miscible blend membranes containing 10 wt % PEG of low molecular weight 200, 600, 2000, and 6000, and 10 wt %, 20 wt %, 30 wt %, 40 wt %, 50 wt %, and 60 wt % of molecular weight 20,000 were prepared to investigate the effect of PEG on gas permeabilities and selectivities for CO2 over N2 and CH4. The permeabilities of CO2, H2, O2, CH4, and N2 were measured at temperatures from 30 to 80°C and pressures from 20 cmHg to 76 cmHg using a manometric permeation apparatus. It was determined that the blend membrane, which contained 10% PEG 20,000, exhibited higher permeability for CO2 and higher permselectivity for CO2 over N2 and CH4 than those of the membranes that contained 10% PEG of the molecular weight ranging from 200 to 6000. The high PEG 20,000 content blend membranes showed remarkable permeation properties such that the permeability coefficients of CO2 and the ideal separation factors for CO2 over N2 reached above 200 barrer and 22, respectively, at 70°C and 20 cmHg. Based on the data of gas permeability coefficients, time lags, and characterization of the membranes, it is proposed that the apparent solubility coefficients of all CA and PEG blend membranes for CO2 were lower than those of the CA membrane. However, almost all of the blend membranes containing PEG 20,000 showed higher apparent diffusivity coefficients for CO2, resulting in higher permeability coefficients of CO2 than those of the CA membrane. It is attributed to the high diffusivity selectivities of CA and PEG 20,000 blend membranes that their ideal separation factors for CO2 over N2 were higher than those of the CA membrane in the temperature range from 50 to 80°C, even though the ideal separation factors of all CA and PEG blend membranes for CO2 over CH4 became lower than those of the CA membrane over nearly the full temperature range from 30 to 80°C. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
This article focused on segregation of low concentration CO2 from CO2/N2 mixture gas by implementing high‐performance facilitated transport mixed matrix membranes (MMMs) in large‐scale carbon capture techniques. These advanced, novel CO2‐selective membrane materials were developed by embedding silica nanoparticles at different loading into the poly(vinyl alcohol) (PVA)/poly(ethylene glycol) (PEG) matrix using solution casting. In situ sol–gel technique was applied for the synthesis of the hydrophilic SiO2 nanoparticles. The compatibility of filler‐polymer matrix plays a crucial role in the optimization of the membrane performance. The dispersion and interaction of the filler into the polymer matrix were confirmed by thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, X‐ray diffraction, field emission scanning electron microscopy, contact angle tests, and swelling ratio analysis. Field emission scanning electron microscopy analysis of the synthesized MMMs established the homogeneous dispersion of the fillers in the polymer matrix. Owing to its good compatibility with PVA/PEG matrix, the inclusion of fillers significantly increased the overall separation efficiency of CO2 within the membrane. Compared to pristine PVA/PEG membrane, PVA/PEG/silica membrane with 3.34 wt % silica loading showed pronounced improvement in its gas separation properties with 78% augmentation in CO2 permeability and 45% enhancement in CO2/N2 selectivity for fixed conditions pertaining to sweep side water flow rate of 0.04 mL/min and 100 °C temperature. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46481.  相似文献   

12.
Studies were conducted on transport properties and separation performance of date pit/polysulfone composite membranes for CO2, CH4, N2, He, and H2 gases. Date seeds were obtained and processed into powder. Asymmetric flat sheet membrane was prepared by solvent casting method with 2–10 wt % date pit powder. Membrane characterization was done using high pressure gas permeation, X‐ray diffraction, thermogravimetric, and scanning electron microscope analyses. The separation performance and the plasticization resistance property were evaluated in terms of gas permeability, selectivity, and plasticization pressure, respectively. Time dependent performance properties were evaluated up to a pressure of 40 bar for 75 days. Results obtained showed the highest selectivity values of 1.54 (He/H2), 3.637 (He/N2), 2.538 (He/CO2), 2.779 (He/CH4), 3.179 (H2/N2), 3.907 (H2/CO2), 1.519 (CH4/N2), 1.650 (CO2/N2), and 1.261 (CO2/CH4) at 10 bar and 35 °C feed pressure and temperature, respectively. The resulting composite membrane showed about 39.50 and 66.94% increase in the selectivity of He/N2 and CO2/CH4, respectively, as compared to the pure polysulfone membrane. Thus, the membrane composites possess some potentials in membrane gas separation. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43606.  相似文献   

13.
Tubular carbon membranes were fabricated by the blending of BTDA-TDI/MDI (P84) polyimide with nanocrystalline cellulose in a controlled pyrolysis process, specifically the pyrolysis environment (He, Ar, and N2) and the thermal soak time (30–120 min). The carbon membrane layer on a tubular support is converted to carbon matrix at 800 °C with a heating rate of 3 °C min−1. The effects of these controlled pyrolysis conditions on the gas permeation properties have been investigated. The results revealed that the pyrolysis under Ar gas environment at 120 min of thermal soak time have the best gas permeation performance with the highest CO2/CH4 selectivity of 68.2 ± 3.3 and CO2 permeance of 213.6 ± 2.2 GPU. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46901.  相似文献   

14.
Graphene oxide (GO)‐polyether block amide (PEBA) mixed matrix membranes were fabricated and the effects of GO lateral size on membranes morphologies, microstructures, physicochemical properties, and gas separation performances were systematically investigated. By varying the GO lateral sizes (100–200 nm, 1–2 μm, and 5–10 μm), the polymer chains mobility, as well as the length of the gas channels could be effectively manipulated. Among the as‐prepared membranes, a GO‐PEBA mixed matrix membrane (GO‐M‐PEBA) containing 0.1 wt % medium‐lateral sized (1–2 μm) GO sheets showed the highest CO2 permeation performance (CO2 permeability of 110 Barrer and CO2/N2 mixed gas selectivity of 80), which transcends the Robeson upper bound. Also, this GO‐PEBA mixed matrix membrane exhibited high stability during long‐term operation testing. Optimized by GO lateral size, the developed GO‐PEBA mixed matrix membrane shows promising potential for industrial implementation of efficient CO2 capture. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2843–2852, 2016  相似文献   

15.
Carbon molecular sieve membranes (CMSM) were prepared from the pyrolysis of polyimide films within a temperature range of 600°C-800°C under nitrogen stream. The membrane samples were characterized and tested for the permeation of He, CH4, CO2, and N2 at different pressures and temperatures, respectively. The CMSM700 membrane (pyrolyzed at 700°C) showed an ideal selectivity of ~ 11 for N2/CH4 with a permeability of 2.18 × 10−15 mol · m/m2 · s · Pa for N2. The separation mechanism for the N2/CH4 pair was shown to be largely molecular sieving rather than surface flow. The membrane showed an ideal selectivity of ~ 500 for the CO2/CH4 pair with a CO2 permeability of 9.72 × 10−14 mol · m/m2 · s · Pa. The permeability of He was lower than that of CO2, suggesting that the surface flow played a significant role in the CO2 permeation. The updated permeability-selectivity tradeoff curves show that this CMSM membrane compared favourably with other membrane materials reported in the literature for the removal of N2 and CO2 from CH4 for natural gas upgrading.  相似文献   

16.
Introducing inorganic nanoparticles into the structure of polymeric membranes is an interesting approach for the enhancement of physical, chemical, and separation properties of the membranes. In this article, the performance of a two‐layer nanocomposite membrane for gas separation was studied. Three different methods for embedding titanium dioxide (TiO2) nanoparticle were employed for the membrane preparation. The techniques include blending TiO2 in the polydimethylsiloxane (PDMS) coating layer, blending TiO2 in the polyethersulfone (PES) support and dip coating of PES support with TiO2 accompanied by PDMS coating. The aim of the current research was finding the optimum technique for introducing TiO2 into the membrane to obtain superior performance for gas separation. The results indicated that PES support containing TiO2 nanoparticles possessed favorable effect on gas separation capability. The optimum performance was obtained by PDMS‐coated membranes prepared with 7 wt% TiO2‐embedded PES support. Carbon dioxide (CO2) permeance, CO2/nitrogen, and CO2/methane selectivity were obtained as 188.7 GPU, 8.6, and 3.4, respectively. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

17.
Emission of sulfur dioxide (SO2) from coal power plants has to be controlled and minimized to reduce environmental risk. This study aimed to investigate the hollow fiber composite membrane was used for the removal of SO2 from a SO2/CO2/N2 mixed gas. Moreover, for the improvement of SO2 removal efficiency, the polyetherimide (PEI) membrane was coated with poly(vinyl chloride)‐graft‐poly(oxyethylene methacrylate) (PVC‐g‐POEM). The PVC‐g‐POEM/PEI composite hollow fiber membrane was extensively characterized by various techniques including scanning electron microscopy, Fourier transform infrared spectroscopy, and atomic force microscopy. Experiments with permeation of SO2, CO2, N2, and a ternary gas mixture were carried out to observe membrane behavior in response to different operating conditions. As a result, permeance of SO2 was 105–2705 GPU and selectivity of SO2/CO2 was 3.9–175.6. From the mixed gas separation experiment, the maximum SO2 removal efficiency reached up to 84.5%. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2298–2306, 2014  相似文献   

18.
Nano-sized silica/polysulfone (PSf) flat sheet asymmetric MMMs with high CO2 permeance for CO2/N2 separation were fabricated by dry/wet phase inversion method using N, N-dimethylacetamide (DMAc) and tetrahydrofuran (THF) as solvents and ethanol as additives. The results indicated that the addition of nano-silica on the polymer matrix resulted on reduced membrane performance due to void formation and particle agglomeration. Optimum membrane performance was obtained at the following fabrication parameters: 22 wt.% PSf, 31.8 wt.% DMAc, 31.8 wt.% THF, 14.4 wt.% ethanol, 20 s evaporation time, and 0 wt.% silica loading, with CO2/N2 selectivity of 15.6 and CO2 permeance of 14.2 GPU.  相似文献   

19.
《分离科学与技术》2012,47(10):1385-1394
Carbon dioxide capture and storage (CCS) has been propounded as an important issue in greenhouse gas emissions control. In this connection, in the present article, the advantages of using polymeric membrane for separation of carbon dioxide from CO2/N2 streams have been discussed. A novel composition for fabrication of a blend membrane prepared from acrylonitrile-butadiene-styrene (ABS) terpolymer and polyethylene glycol (PEG) has been suggested. The influence of PEG molecular weight (in the range of 400 to 20000) on membrane characteristics and gas separation performance, the effect of PEG content (0–30 wt%) on gas transport properties, and the effect of feed side pressure (ranging from 1 to 8 bar) on CO2 permeability have been studied. The results show that CO2 permeability increases from 5.22 Barrer for neat ABS to 9.76 Barrer for ABS/PEG20000 (10 wt%) while the corresponding CO2/N2 selectivity increases from 25.97 to 44.36. Furthermore, it is concluded that this novel membrane composition has the potential to be considered as a commercial membrane.  相似文献   

20.
This study is focused on the development of ionic liquids (ILs) based polymeric membranes for the separation of carbon dioxide (CO2) from methane (CH4). The advantage of ILs in selective CO2 absorption is that it enhances the CO2 selective separation for the ionic liquid membranes (ILMs). ILMs are developed and characterized with two different ILs using the solution‐casting method. Three different blend compositions of ILs and polysulfone (PSF) are selected for each ILMs 10, 20, and 30 wt %. Effect of the different types of ILs such as triethanolamine formate (TEAF) and triethanolamine acetate (TEAA) are investigated on PSF‐based ILMs. Field emission scanning electron microscopy analysis of the membranes showed reasonable homogeneity between the ILs and PSF. Thermogravimetric analysis showed that by increasing the ILs loading thermal stability of the membranes improved. Mechanical analysis on developed membranes showed that ILs phase reduced the amount of plastic flow of the PSF phase and therefore, fracture takes place at gradually lower strains with increasing ILs content. Gas permeation evaluation was carried out on the developed membranes for CO2/CH4 separation between 2 bar to 10 bar feed pressure. Results showed that CO2 permeance increases with the addition of ILs 10–30 wt % in ILMs. With 20–30 wt % TEAF‐ILMs and TEAA‐ILMs, the highest selectivity of a CO2/CH4 53.96 ± 0.3, 37.64 ± 0.2 and CO2 permeance 69.5 ± 0.6, 55.21 ± 0.3 is observed for treated membrane at 2–10 bar. The selectivity using mixed gas test at various CO2/CH4 compositions shows consistent results with the ideal gas selectivity. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45395.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号