首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Polyglycidylmethacrylate grafted butadiene rubber (PGMA‐g‐BR) was synthesized by a graft solution copolymerization technique. The PGMA content was determined through titration against HBr. The PGMA‐g‐BR was blended with styrene butadiene rubber/butadiene acrylonitrile rubber (SBR/NBR) blends with different blend ratios. The SBR/NBR (50/50) blend was selected to examine the compatibility of such blends. Compatibility was examined using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and viscosity measurements. The scanning electron micrographs illustrate the change of morphology of the SBR/NBR rubber blend as a result of the incorporation of PGMA‐g‐BR onto that blend. The Tgs of SBR and NBR in the blend get closer upon incorporation of PGMA‐g‐BR 10 phr, which indicates improvement in blend homogeneity. The intrinsic viscosity (η) versus blend ratio graph shows a straight‐line relationship, indicating some degree of compatibility. Thermal stability of the compatibilized and uncompatibilized rubber blend vulcanizates was investigated by determination of the physicomechanical properties before and after accelerated thermal aging. Of all the vulcanizates with different blend ratios under investigation, the SBR/NBR (25/75) compatibilized blend possessed the best thermal stability. However, the SBR/NBR (75/25) compatibilized blend possessed the best swelling performance in brake fluid. The effect of various combinations of inorganic fillers on the physicomechanical properties of that blend, before and after accelerated thermal aging, was studied in the presence and absence of PGMA‐g‐BR. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1559–1567, 2006  相似文献   

2.
Cardanol is a byproduct of cashew industry of semiforest origin. It is cheap and available in humongous amount and acts as a multifunctional additive in rubber compounds. It can be oligomerized with orthophosphoric acid to make phosphorylated cardanol prepolymer (PCP). Hence, cardanol has been chemically grafted on to the backbone chain of carboxylated styrene–butadiene rubber (XSBR) by employing melt grafting technique in presence of peroxide initiator to include multifunctional properties. The PCP-grafted XSBR (PCP-g-XSBR) was characterized by using Fourier transform infrared spectroscopy and 1H-NMR techniques and optimize the grafting conditions such as percent of grafting and grafting efficiency by using Taguchi methodology. PCP-g-XSBR was compounded with silica filler for a comparative study in terms of processing behavior with XSBR. The cure characteristics such as the cure rate and the optimum cure time of the unfilled PCP-g-XSBR compounds were determined by oscillating disc rheometer. The thermal analysis of PCP-g-XSBR vulcanizate exhibits slightly better thermal stability as well as plasticization effect. Morphological behaviors also display the less cracked and filled fracture surfaces with better filler dispersion in PCP-g-XSBR vulcanizate. The mechanical properties of the compounded PCP-g-XSBR vulcanizates also improve compare to XSBR vulcanizates. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47528.  相似文献   

3.
The potential application of lignin biopolymer as a component of styrene–butadiene rubber was examined with regard to its ability to reinforce the vulcanizates. It was shown that the sulfur‐free lignin preparation improved physicomechanical properties of rubber. The determination of the coefficient of lignin activity confirmed that lignin acts as an active filler. FTIR characteristics of lignin isolated from the vulcanizate containing 20 phr lignin indicated its interaction with the sulfur system, resulting in formation of noncyclic sulfide structures. In the case of higher lignin amount in the vulcanizate, some interfacial interaction between lignin and SBR may occur. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 924–929, 2005  相似文献   

4.
Through the neutralization of magnesium oxide (MgO) and methacrylic acid (MAA), magnesium methacrylate [Mg(MAA)2] was in situ prepared in styrene–butadiene rubber (SBR) and used to reinforce the SBR vulcanizates cured by dicumyl peroxide (DCP). The experimental results show that the mechanical properties, dynamic mechanical properties, optical properties, and crosslink structure of the Mg(MAA)2‐reinforced SBR vulcanizates depend on the DCP content, Mg(MAA)2 content, and the mole ratio of MgO/MAA. The formulation containing DCP 0.6–0.9 phr, Mg(MAA)2 30–40 phr, and MgO/MAA mole ratio 0.50–0.75 is recommended for good mechanical properties of the SBR vulcanizates. The tensile strength of the SBR vulcanizates is up to 31.4 MPa when the DCP content is 0.6 phr and the Mg(MAA)2 content is 30 phr. The SBR vulcanizate have good aging resistance and limited retention of tensile strength at 100°C. The SBR vulcanizates are semitransparent, and have a good combination of high hardness, high tensile strength, and elongation at break. The Tg values of the SBR vulcanizates depend largely on the DCP content, but depend less on the Mg(MAA)2 content and the MgO/MAA mole ratio. The contents of DCP, Mg(MAA)2, and the MgO/MAA mole ratio have also great effects on the E′ values of the vulcanizates. The salt crosslink density is greatly affected by the Mg(MAA)2 content and MgO/MAA mole ratio, but less affected by the DCP content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2667–2676, 2002  相似文献   

5.
Styrene butadiene rubber (SBR) was modified by the grafting reaction of maleic anhydride (MAH) in the presence of the initiator benzoyl peroxide (BPO). This modified elastomer was then blended with poly(ethylene terephthalate) (PET) bottle waste, and the mechanical and morphological properties of the resulting blends were studied. The amount of grafted MAH was determined by chemical titration. The results revealed that the concentrations of MAH and BPO strongly affected the grafting process. The morphology of the dispersed phase for blends of PET waste and SBR‐g‐MAH was quite different from that of a simple blend of PET waste and SBR. Dynamic mechanical thermal analysis revealed suitable compatibility between PET waste and styrene butadiene rubber‐graft‐maleic anhydride (SBR‐g‐MAH). The enhanced compatibility resulted in better impact properties. The better compatibility was concluded to result from bond formation between the carbonyl group of SBR‐g‐MAH and the hydroxyl or carboxyl end groups of PET. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1615–1623, 2006  相似文献   

6.
In this study, we investigated the effects of untreated precipitated silica (PSi) and fly ash silica (FASi) as fillers on the properties of natural rubber (NR) and styrene–butadiene rubber (SBR) compounds. The cure characteristics and the final properties of the NR and SBR compounds were considered separately and comparatively with regard to the effect of the loading of the fillers, which ranged from 0 to 80 phr. In the NR system, the cure time and minimum and maximum torques of the NR compounds progressively increased at PSi loadings of 30–75 phr. A relatively low cure time and low viscosity of the NR compounds were achieved throughout the FASi loadings used. The vulcanizate properties of the FASi‐filled vulcanizates appeared to be very similar to those of the PSi‐filled vulcanizates at silica contents of 0–30 phr. Above these concentrations, the properties of the PSi‐filled vulcanizates improved, whereas those of the FASi‐filled compounds remained the same. In the SBR system, the changing trends of all of the properties of the filled SBR vulcanizates were very similar to those of the filled NR vulcanizates, except for the tensile and tear strengths. For a given rubber matrix and silica content, the discrepancies in the results between PSi and FASi were associated with filler–filler interactions, filler particle size, and the amount of nonrubber in the vulcanizates. With the effect of the FASi particles on the mechanical properties of the NR and SBR vulcanizates considered, we recommend fly ash particles as a filler in NR at silica concentrations of 0–30 phr but not in SBR systems, except when improvement in the tensile and tear properties is required. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2119–2130, 2004  相似文献   

7.
The influence of bis(diisopropyl) thiophosphoryl disulfide, a multifunctional rubber additive, on the curing characteristics and physical properties of polychloroprene rubber and styrene butadiene rubber blends was studied. It is evident from the study that covulcanization of SBR and CR following a two‐stage process leads to the development of improved physical properties of the vulcanizates. Dielectric and scanning electron microscopy study supports the occurrence of coherence of the dissimilar rubber blends. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1492–1504, 2005  相似文献   

8.
Graft polymerization of vinyltriethoxysilane (VTES) onto styrene‐butadiene rubber (SBR) was carried out in latex using benzoic peroxide (BPO) as an initiator. The concentration of VTES effecting on vulcanization characteristics, mechanical properties and thermal properties of VTES‐grafted SBR (SBR‐g‐VTES) were investigated. The grafting of VTES onto SBR and its pre‐crosslinking were confirmed by attenuated total teflectance‐Fourier transform infrared reflectance and proton nuclear magnetic resonance. The mechanism of graft polymerization was studied. The results revealed that the minimum torque, optimum cure time, tensile strength, thermal decomposition temperature, and glass transition temperature (Tg) all increased with the increasing concentration of VTES. But the grafting efficiency of VTES, rate of vulcanization, and elongation at break of the SBR‐g‐VTES decreased. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Carbon nanotubes‐silica (CNTs‐SiO2) nanohybrid filler was fabricated by coating inorganic silica on multi‐wall CNTs through a sol–gel process. The CNTs‐SiO2 nanohybrids were then functionalized by 3‐methacryloxypropyltrimethoxysilane (3‐MPTS) followed by compounding to solution styrene butadiene rubber (S‐SBR) through mechanical mixing. The Fourier‐transform infrared spectroscopy showed that the CNTs were coated by inorganic SiO2, and grafted with 3‐MPTS successfully. The functionalized CNTs‐SiO2 nanohybrids had a rough surface as revealed by transmission electron microscope images. After hybridization and grafting, the functionalized CNTs‐SiO2 nanohybrids still maintained the crystal structure of CNTs, which was determined by X‐ray diffraction and Raman spectrum. The addition of nanohybrids accelerated the vulcanization process and improved the crosslinking degree of vulcanizates. With adding 10 phr (parts per hundred of rubber) functionalized CNTs‐SiO2, the mechanical properties of S‐SBR vulcanizates were improved significantly. The tensile moduli at 100% elongation (M100) and tensile strength had 54% and 28% increase, respectively. The incorporation of functionalized CNTs‐SiO2 nanohybrids also largely enhanced the storage modulus, and slightly increased the thermal conductivity of vulcanizates. POLYM. COMPOS., 00:000–000, 2013. © 2013 Society of Plastics Engineers POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

10.
This article explored the possibility of using silica from fly‐ash particles as reinforcement in natural rubber/styrene–butadiene rubber (NR/SBR) vulcanizates. For a given silica content, the NR : SBR blend ratio of 1 : 1 (or 50 : 50 phr) exhibited the optimum mechanical properties for fly‐ash filled NR/SBR blend system. When using untreated silica from fly‐ash, the cure time and mechanical properties of the NR/SBR vulcanizates decreased with increasing silica content. The improvement of the mechanical properties was achieved by addition of Si69, the recommended dosage being 2.0 wt % of silica content. The optimum tensile strength of the silica filled NR/SBR vulcanizates was peaked at 10–20 phr silica contents. Most mechanical properties increased with thermal ageing. The addition of silica from fly‐ash in the NR/SBR vulcanizates was found to improve the elastic behavior, including compression set and resilience, as compared with that of commercial precipitated silica. Taking mechanical properties into account, the recommended dosage for the silica (FASi) content was 20 phr. For more effective reinforcement, the silica from fly‐ash particles had to be chemically treated with 2.0 wt % Si69. It was convincing that silica from fly‐ash particles could be used to replace commercial silica as reinforcement in NR/SBR vulcanizates for cost‐saving and environment benefits. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

11.
Maleated glycidyl 3‐pentadecenyl phenyl ether (M‐GPPE) was synthesized from glycidyl 3‐pentadecenyl phenyl ether (GPPE), a renewable derivative from cardanol, with maleic anhydride (MAH) by grafting copolymerization. The resulting M‐GPPE was used as a functionalized plasticizer for a styrene–butadiene rubber (SBR)/carbon black (CB)/silica composite. The effects of M‐GPPE on the development of the filler network, the extent of silica dispersion, the curing characteristics, and the mechanical performance of the composites were studied. Meanwhile, a comparative study was performed between M‐GPPE and aromatic oil, a traditional plasticizer used in SBR filler formulations. Gel permeation chromatography and IR and 1H‐NMR analysis results confirmed the occurrence of the grafting reaction between GPPE and MAH and the potential structure of M‐GPPE. The thermostability of GPPE was improved by grafting copolymerization with MAH, as shown by thermogravimetric analysis results. The presence of M‐GPPE resulted in a shorter curing time and better aging properties in the SBR composite compared with GPPE. The mechanical properties, dynamic mechanical analysis, and transmission electron microscopy analysis showed that the maleate of GPPE could enhance the compatibility between SBR and silica, improve the dispersion of silica in SBR, and partially replace the aromatic oil in the SBR/CB/silica composite formulation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40462.  相似文献   

12.
This work deals with the synthesis of aromatic polyester (AP) from polyarylate [Bisphenol A (BPA)/dimethyl terephalate (DMT)/ethylene glycol (EG)] and maleic anhydride (MA) in presence of dibutyl tin oxide (DBTO) as a catalyst. Blends were prepared from candidated AP (10–30 phr) with different types of rubber [natural rubber (NR), acrylonitrile butadiene rubber (NBR), styrene butadiene rubber (SBR) and ethylene‐propylene‐diene monomer (EPDM)]. The obtained blends were subjected to physicomechanical measurements to evaluate their properties as efficient blends for economic industrial applications. In case of AP blended with rubber, better properties were obtained than that of rubber vulcanizates. The fatigue life values decreases by increasing the AP contents for all types of the tested blends. The equilibrium swelling (%) for the prepared blends exhibits different behavior in solvents like toluene and motor oil. The addition of N‐isopropyl‐N′‐phenyl‐p‐phenylene diamine (IPPD), as antioxidant, affects the properties of all the prepared products. These properties were in consequent with the data of the initial shear modulus, which is calculated from the Mooney‐Rivlin equation and the percentage of the equilibrium swelling. Scanning electron microscope (SEM) was used to study the morphological structure; the SEM results show the changes in surface of the rubber before and after being blended with AP. The investigated blends are considered a new trend in giving products with variable physicomechanical characteristics. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
The effect of the addition of 5 and 10 phr of unsaturated polyester resin (UPE) on the compatibility and physicomechanical properties of styrene–butadiene (SBR) and acrylonitrile–butadiene (NBR) rubber blends was studied. Differential scanning calorimetry (DSC), scanning electron microscopy (SEM), electrical, and ultrasonic techniques were used to determine the degree of the compatibility (DC). The results obtained revealed that, by the addition of 10 parts per hundred parts of rubber (phr) UPE as a compatibilizer for SBR/NBR blends, the degree of compatibility was greatly enhanced. The rheological and mechanical properties of the blends were also improved. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2314–2321, 2002  相似文献   

14.
Migration behaviors of antiozonants in carbon black‐filled rubber vulcanizates with different rubber compositions of natural rubber (NR), styrene–butadiene rubber (SBR), and butadiene rubber (BR) were studied at constant temperatures of 40–100°C and outdoors. Three single rubber‐based vulcanizates, three biblends, and three triblends were used. N‐Phenyl‐N′‐isopropyl‐p‐phenylenediamine (IPPD) and N‐phenyl‐N′‐(1,3‐dimethylbutyl)‐p‐phenylenediamine (HPPD) were employed as antiozonants. Migration rates of the antiozonants became faster with increasing the temperature. The order of the migration rates in the single rubber‐based vulcanizates was BR > NR > SBR. The migration rates in the vulcanizates containing SBR, on the whole, increased with decreasing the SBR content, while those in the vulcanizates containing BR decreased with decreasing the BR content. Difference in the migration behaviors of the antiozonants depending on the rubber composition was explained both by the intermolecular interactions of the antiozonants with the matrix and by interface formed between dissimilar rubbers in the blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 237–242, 2001  相似文献   

15.
The results on testing application of ground tire rubber (GTR), as potential filler for butyl rubber, are presented. The GTR content variation, within the range of 10–90 phr, was studied with respect to the vulcanization process, static mechanical properties (tensile strength, elongation-at-break, hardness and resilience), dynamic mechanical properties and the morphology of the obtained vulcanizates. Butyl rubber was characterized by its low compatibility to other elastomers [i.e., natural rubber and styrene–butadiene rubber (SBR)—the main ingredients of tires] and low degree of unsaturation. To evaluate the impact of these factors on curing characteristics and mechanical properties of butyl rubber vulcanizates filled with GTR, the same compositions of SBR compounds, cured under identical conditions, were used as reference samples. Based on the obtained data, it can be stated that butyl rubber vulcanizates containing 30 phr of GTR as filler revealed the highest tensile strength and elongation-at-break. The microstructural analysis of a sample containing 30 phr of GTR revealed strong interactions between the butyl rubber matrix and GTR. This phenomenon resulted mainly from two factors. First, the cross-link density of the butyl rubber matrix was affected by its competition against GTR for cross-linking agents. Secondly, the migration of carbon black particles from GTR into the butyl rubber matrix had a significant impact on properties of the obtained vulcanizates.  相似文献   

16.
Natural rubber (NR) usage is wide‐spread from pencil erasers to aero tyres. Carbon black and silica are the most common reinforcing fillers in the rubber industries. Carbon black enhances the mechanical properties, while silica reduces the rolling resistance and enhances the wet grip characteristics. However, the dispersion of polar silica fillers in the nonpolar hydrocarbon rubbers like natural rubber is a serious issue to be resolved. In recent years, cardanol, an agricultural by‐product of the cashew industry is already established as a multifunctional additive in the rubber. The present study focuses on dispersion of silica filler in natural rubber grafted with cardanol (CGNR) and determination of its technical properties. The optimum cure time reduces and the cure rate increases for the CGNR vulcanizates as compared to that of the NR vulcanizates at all loadings of silica varying from 30 to 60 phr. The interaction between the phenolic moiety of cardanol and the siloxane as well as silanol functional groups present on the silica surface enhances the rubber–filler interaction which leads to better reinforcement. The crosslink density and bound rubber content are found to be higher for the silica reinforced CGNR vulcanizates. The physico‐mechanical properties of the silica reinforced CGNR vulcanizates are superior to those of the NR vulcanizates. The CGNR vulcanizates show lower compression set and lower abrasion loss. The dynamic‐mechanical properties exhibit less Payne effect for silica reinforced CGNR vulcanizates as compared to the NR vulcanizates. The transmission electron photomicrographs show uniform dispersion of silica filler in the CGNR matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43057.  相似文献   

17.
Surface treatment of cellulose fibers was performed with maleated high oleic sunflower oil (MSOHO). The MSOHO‐treated cellulose fibers and unmodified cellulose fibers were dispersed in styrene butadiene rubber (SBR) using a two roll mill. Vapor grown carbon nanofibers (VGCNF) were also incorporated at only one parts per hundred rubber (phr) in unmodified cellulose fibers/SBR composites. The curing characteristics, mechanical properties, and water absorption of the resulting composites were determined. MSOHO‐treated fibers completed curing at much slower rate and also decreased the cure density of composites, compared to unmodified fibers. In contrast, the combination of VGCNF and unmodified cellulose fibers accelerated the SBR curing process, but reduced the cure density. MSOHO treatment improved the dispersion of the fibers in the SBR, which resulted in improved mechanical properties of composites. The composite incorporating 1 phr VGCNF and 15 phr unmodified cellulose fibers showed the greatest increase in tensile strength as compared with neat SBR. POLYM. COMPOS. 37:1113–1121, 2016. © 2014 Society of Plastics Engineers  相似文献   

18.
Covulcanization of elastomer blends constituting styrene–butadiene rubber (SBR) and ethylene–propylene–diene (monomer) rubber (EPDM) was successfully performed in the presence of reinforcing fillers like carbon black and silica by using a multifunctional rubber additive, bis(diisopropyl)thiophosphoryl disulfide (DIPDIS). The polarity of EPDM rubber was increased by a two‐stage vulcanization technique, which allowed the formation of rubber‐bound intermediates. In this way the migration of both curatives and reinforcing fillers in the EPDM–SBR blend could be controlled and cure rate mismatch could be minimized. The process significantly improved the physical properties of the blend vulcanizates. The phase morphology, as evident from the SEM micrographs, was indicative of the presence of a much more compact and coherent rubber matrix in the two‐stage vulcanizates. Different accelerator systems were studied to understand better the function and effectiveness of DIPDIS in developing homogeneity in the blends of dissimilar elastomers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1231–1242, 2004  相似文献   

19.
Hydroxy teminated polybutadiene (HTPB) was grafted onto the surface of nanosilica particles via toluene di‐isocyanate (TDI) bridging to reduce filler–filler interactions and improve dispersion of nanosilica in rubber. Also, this prepolymer as modifier contains double bonds which participate in sulfur curing of styrene butadiene rubber (SBR) matrix to enhance filler/polymer interaction and reinforcement effects of silica. The reactions were characterized by titration and Fourier transforms infrared spectroscopy. Thermogravimetric analysis was utilized to evaluate the weight percentage of grafted TDI and HTPB. About 60% of the hydroxyl sites of silica were reacted with excess TDI in the first reaction. In the second reaction, HTPB as desired reactive coating was grafted on the functionalized nanosilica to constitute about 24 wt % of the final modified silica. The sedimentation experiments showed good suspension stability for the modified nanosilica in the organic media. Scanning electron microscopy revealed nanoscale dispersion of modified silica aggregates in the SBR matrix at concentration of about 14 phr. Also, vulcanization characteristics and mechanical properties of compounds demonstrated that HTPB grafting improved dispersion of nanosilica as well as its interaction to the rubber matrix as an efficient reinforcement. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
In this study, the interactions between rubber and fillers in α_cellulose‐filled styrene butadiene rubber (SBR) composites were investigated. The results obtained from the tensile and tear strength, abrasion resistance, and hardness indicate that addition of 5‐phr α_cellulose into compound not only does not affect rubber–carbon black bond but improves the mentioned physicomechanical properties. In this study, the type of carbon black was changed from N 330 to N 550. The main purpose of this investigation was to observe the possible changes in physicomechanical properties due to this change. Obtained results show that overall observation of the trends of results do not change with type of carbon black. It can be concluded that the presence of α_cellulose does not have significant influence on the performance of carbon black in the compounds used. POLYM. COMPOS., 28:748–754, 2007. © 2007 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号