首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Force-velocity relations, myosin heavy chain (MHC) and myosin light chain (MLC) isoform composition of single skinned fibres from rat plantaris muscle were determined. In fibres containing the same (2X) isoform of myosin heavy chain, several parameters derived from the force-velocity relation and isometric force (Po) were tested for relation with the fibre content in alkali myosin light chain (MLC) isoforms. Whereas maximum shortening velocity was found to be proportional to the relative content in the 3f isoform of alkali MLC, velocity of shortening at 5% relative load, maximum power output, and Po were not. These results strengthen the idea that, in mammalian skeletal fibres, alkali MLC isoforms modulate shortening velocity at zero load, but suggest that they do not control the contractile behaviour at loads higher than zero.  相似文献   

4.
Increased cardiovascular mortality occurs in diabetic patients with or without coronary artery disease and is attributed to the presence of diabetic cardiomyopathy. One potential mechanism is hyperglycemia that has been reported to activate protein kinase C (PKC), preferentially the beta isoform, which has been associated with the development of micro- and macrovascular pathologies in diabetes mellitus. To establish that the activation of the PKCbeta isoform can cause cardiac dysfunctions, we have established lines of transgenic mice with the specific overexpression of PKCbeta2 isoform in the myocardium. These mice overexpressed the PKCbeta2 isoform transgene by 2- to 10-fold as measured by mRNA, and proteins exhibited left ventricular hypertrophy, cardiac myocyte necrosis, multifocal fibrosis, and decreased left ventricular performance without vascular lesions. The severity of the phenotypes exhibited gene dose-dependence. Up-regulation of mRNAs for fetal type myosin heavy chain, atrial natriuretic factor, c-fos, transforming growth factor, and collagens was also observed. Moreover, treatment with a PKCbeta-specific inhibitor resulted in functional and histological improvement. These findings have firmly established that the activation of the PKCbeta2 isoform can cause specific cardiac cellular and functional changes leading to cardiomyopathy of diabetic or nondiabetic etiology.  相似文献   

5.
Numerous studies have implicated Coxsackievirus in acute and chronic heart failure. Although enteroviral nucleic acids have been detected in selected patients with dilated cardiomyopathy, the significance of such persistent nucleic acids is unknown. To investigate the mechanisms by which restricted viral replication with low level expression of Coxsackieviral proteins may be able to induce cardiomyopathy, we generated transgenic mice which express a replication-restricted full-length Coxsackievirus B3 (CVB3) cDNA mutant (CVB3DeltaVP0) in the heart driven by the cardiac myocyte-specific myosin light chain-2v (MLC-2v) promoter. CVB3DeltaVP0 was generated by mutating infectious CVB3 cDNA at the VP4/VP2 autocatalytic cleavage site from Asn-Ser to Lys-Ala. Cardiac-specific expression of this cDNA leads to synthesis of positive- and negative-strand viral RNA in the heart without formation of infectious viral progeny. Histopathologic analysis of transgenic hearts revealed typical morphologic features of myocardial interstitial fibrosis and in some cases degeneration of myocytes, thus resembling dilated cardiomyopathy in humans. There was also an increase in ventricular atrial natriuretic factor mRNA levels, demonstrating activation of the embryonic program of gene expression typical of ventricular hypertrophy and failure. Echocardiographic analysis demonstrated the presence of left ventricular dilation and decreased systolic function in the transgenic mice compared with wild-type littermates, evidenced by increased ventricular end-diastolic and end-systolic dimensions and decreased fractional shortening. Analysis of isolated myocytes from transgenic mice demonstrate that there is defective excitation-contraction coupling and a decrease in the magnitude of isolated cell shortening. These data demonstrate that restricted replication of enteroviral genomes in the heart can induce dilated cardiomyopathy with excitation-contraction coupling abnormalities similar to pressure overload models of dilated cardiomyopathy.  相似文献   

6.
We examine how the structure and function of indirect flight muscle (IFM) and the entire flight system of Drosophila melanogaster are affected by phosphorylation of the myosin regulatory light chain (MLC2). This integrated study uses site-directed mutagenesis to examine the relationship between removal of the myosin light chain kinase (MLCK) phosphorylation site, in vivo function of the flight system (flight tests, wing kinematics, metabolism, power output), isolated IFM fiber mechanics, MLC2 isoform pattern, and sarcomeric ultrastructure. The MLC2 mutants exhibit graded impairment of flight ability that correlates with a reduction in both IFM and flight system power output and a reduction in the constitutive level of MLC2 phosphorylation. The MLC2 mutants have wild-type IFM sarcomere and cross-bridge structures, ruling out obvious changes in the ultrastructure as the cause of the reduced performance. We describe a viscoelastic model of cross-bridge dynamics based on sinusoidal length perturbation analysis (Nyquist plots) of skinned IFM fibers. The sinusoidal analysis suggests the high power output of Drosophila IFM required for flight results from a phosphorylation-dependent recruitment of power-generating cross-bridges rather than a change in kinetics of the power generating step. The reduction in cross-bridge number appears to affect the way mutant flies generate flight forces of sufficient magnitude to keep them airborne. In two MLC2 mutant strains that exhibit a reduced IFM power output, flies appear to compensate by lowering wingbeat frequency and by elevating wingstroke amplitude (and presumably muscle strain). This behavioral alteration is not seen in another mutant strain in which the power output and estimated number of recruited cross-bridges is similar to that of wild type.  相似文献   

7.
Vertebrate cardiogenesis is a complex process involving multiple, distinct tissue types which interact to form a four-chambered heart. Molecules have been identified whose expression patterns co-segregate with the maturation of the atrial and ventricular muscle cell lineages. It is not currently known what role intrinsic events versus external influences play in cardiac chamber morphogenesis. We developed novel, fluorescent-based, myocardial, cellular transplantation systems in order to study these questions in murine embryos and report the irreversible nature of chamber specification with respect to the downregulation of atrial myosin light chain 2 (MLC-2a) and alpha myosin heavy chain (alpha-MHC). Grafting ventricular cells into the atrial chamber does not result in upregulation of MLC-2a expression in ventricular cells. Additionally, wild-type ventricular muscle cells grafted into the wild-type background appropriately downregulate MLC-2a and alpha-MHC. Finally, grafting of RXRalpha gene-deficient ventricular muscle cells into the ventricular chambers of wild-type embryos does not rescue the persistent expression of MLC-2a, providing further evidence that ventricular chamber maturation is an early event. These studies provide a new approach for the mechanistic dissection of critical signaling events during cardiac chamber growth, maturation and morphogenesis in the mouse, and should find utility with other approaches of cellular transplantation in murine embryos. These experiments document the irreversible nature of the downregulation of atrial markers after the onset of cardiogenesis during ventricular chamber morphogenesis and temporally define the response of cardiac muscle cells to signals regulating chamber specification.  相似文献   

8.
Abnormal smooth muscle contraction may contribute to diseases such as asthma and hypertension. Alterations to myosin light chain kinase or phosphatase change the phosphorylation level of the 20-kDa myosin regulatory light chain (MRLC), increasing Ca2+ sensitivity and basal tone. One Rho family GTPase-dependent kinase, Rho-associated kinase (ROK or p160(ROCK)) can induce Ca2+-independent contraction of Triton-skinned smooth muscle by phosphorylating MRLC and/or myosin light chain phosphatase. We show that another Rho family GTPase-dependent kinase, p21-activated protein kinase (PAK), induces Triton-skinned smooth muscle contracts independently of calcium to 62 +/- 12% (n = 10) of the value observed in presence of calcium. Remarkably, PAK and ROK use different molecular mechanisms to achieve the Ca2+-independent contraction. Like ROK and myosin light chain kinase, PAK phosphorylates MRLC at serine 19 in vitro. However, PAK-induced contraction correlates with enhanced phosphorylation of caldesmon and desmin but not MRLC. The level of MRLC phosphorylation remains similar to that in relaxed muscle fibers (absence of GST-mPAK3 and calcium) even as the force induced by GST-mPAK3 increases from 26 to 70%. Thus, PAK uncouples force generation from MRLC phosphorylation. These data support a model of PAK-induced contraction in which myosin phosphorylation is at least complemented through regulation of thin filament proteins. Because ROK and PAK homologues are present in smooth muscle, they may work in parallel to regulate smooth muscle contraction.  相似文献   

9.
The involvement of tyrosine protein phosphorylation in the regulation of endothelial cell (EC) contraction and barrier function is poorly understood. We have previously shown that myosin light chain (MLC) phosphorylation catalyzed by a novel 214 kDa EC myosin light chain kinase (MLCK) isoform is a key event in EC contraction and barrier dysfunction [Garcia et al. (1995): J Cell Physiol 163:510-522; Garcia et al. (1997): Am J Respir Cell Mol Biol 16:487-491]. In this study, we tested the hypothesis that tyrosine phosphatases participate in the regulation of EC contraction and barrier function via modulation of MLCK activity. The tyrosine phosphatase inhibitor, sodium orthovanadate (vanadate), significantly decreased electrical resistance across bovine EC monolayers and increased albumin permeability consistent with EC barrier impairment. Vanadate significantly increased EC MLC phosphorylation in a time-dependent manner (maximal increase observed at 10 min) and augmented both the MLC phosphorylation and permeability responses produced by thrombin, an agonist which rapidly increases tyrosine kinase activities. The vanadate-mediated increase in MLC phosphorylation was not associated with alterations in either phosphorylase A Ser/Thr phosphatase activities or in cytosolic [Ca2+] but was strongly associated with significant increases in EC MLCK phosphotyrosine content. These data suggest that tyrosine phosphatase activities may participate in EC contractile and barrier responses via the regulation of the tyrosine phosphorylation status of EC MLCK.  相似文献   

10.
Catalytic cores of skeletal and smooth muscle myosin light chain kinases and Ca2+/calmodulin-dependent protein kinase II are regulated intrasterically by different regulatory segments containing autoinhibitory and calmodulin-binding sequences. The functional properties of these regulatory segments were examined in chimeric kinases containing either the catalytic core of skeletal muscle myosin light chain kinase or Ca2+/calmodulin-dependent protein kinase II with different regulatory segments. Recognition of protein substrates by the catalytic core of skeletal muscle myosin light chain kinase was altered with the regulatory segment of protein kinase II but not with smooth muscle myosin light chain kinase. Similarly, the catalytic properties of the protein kinase II were altered with regulatory segments from either myosin light chain kinase. All chimeric kinases were dependent on Ca2+/calmodulin for activity. The apparent Ca2+/calmodulin activation constant was similarly low with all chimeras containing the skeletal muscle catalytic core. The activation constant was greater with chimeric kinases containing the catalytic core of Ca2+/calmodulin-dependent protein kinase II with its endogenous or myosin light chain kinase regulatory segments. Thus, heterologous regulatory segments affect substrate recognition and kinase activity. Furthermore, the sensitivity to calmodulin activation is determined primarily by the respective catalytic cores, not the calmodulin-binding sequences.  相似文献   

11.
Cell interaction with adhesive proteins or growth factors in the extracellular matrix initiates Ras/mitogen-activated protein (MAP) kinase signaling. Evidence is provided that MAP kinase (ERK1 and ERK2) influences the cells' motility machinery by phosphorylating and, thereby, enhancing myosin light chain kinase (MLCK) activity leading to phosphorylation of myosin light chains (MLC). Inhibition of MAP kinase activity causes decreased MLCK function, MLC phosphorylation, and cell migration on extracellular matrix proteins. In contrast, expression of mutationally active MAP kinase kinase causes activation of MAP kinase leading to phosphorylation of MLCK and MLC and enhanced cell migration. In vitro results support these findings since ERK-phosphorylated MLCK has an increased capacity to phosphorylate MLC and shows increased sensitivity to calmodulin. Thus, we define a signaling pathway directly downstream of MAP kinase, influencing cell migration on the extracellular matrix.  相似文献   

12.
Hypertrophic cardiomyopathy is characterized by left and/or right ventricular hypertrophy, which is usually asymmetric and involves the interventricular septum. Typical morphological changes include myocyte hypertrophy and disarray surrounding the areas of increased loose connective tissue. Arrhythmias and premature sudden deaths are common. Hypertrophic cardiomyopathy is familial in the majority of cases and is transmitted as an autosomal-dominant trait. The results of molecular genetics studies have shown that familial hypertrophic cardiomyopathy is a disease of the sarcomere involving mutations in 7 different genes encoding proteins of the myofibrillar apparatus: ss-myosin heavy chain, ventricular myosin essential light chain, ventricular myosin regulatory light chain, cardiac troponin T, cardiac troponin I, alpha-tropomyosin, and cardiac myosin binding protein C. In addition to this locus heterogeneity, there is a wide allelic heterogeneity, since numerous mutations have been found in all these genes. The recent development of animal models and of in vitro analyses have allowed a better understanding of the pathophysiological mechanisms associated with familial hypertrophic cardiomyopathy. One can thus tentatively draw the following cascade of events: The mutation leads to a poison polypeptide that would be incorporated into the sarcomere. This would alter the sarcomeric function that would result (1) in an altered cardiac function and then (2) in the alteration of the sarcomeric and myocyte structure. Some mutations induce functional impairment and support the pathogenesis hypothesis of a "hypocontractile" state followed by compensatory hypertrophy. Other mutations induce cardiac hyperfunction and determine a "hypercontractile" state that would directly induce cardiac hypertrophy. The development of other animal models and of other mechanistic studies linking the genetic mutation to functional defects are now key issues in understanding how alterations in the basic contractile unit of the cardiomyocyte alter the phenotype and the function of the heart.  相似文献   

13.
14.
The modulatory effect of myosin regulatory light chain phosphorylation in mammalian skeletal muscle, first documented as posttetanic potentiation of twitch tension, was subsequently shown to enhance the expression and development of tension at submaximal levels of activating calcium. Structural analyses demonstrated that thick filaments with phosphorylated myosin regulatory light chains appeared disordered: they lost the near-helical, periodic arrangement of myosin head characteristic of the relaxed state. We suggested that disordered heads may be more mobile than ordered heads and are likely to spend more time close to their binding sites on thin filaments. In this study we determined that the physiological effects of phosphorylation could be mimicked by decreasing the lattice spacing between the thick and the thin filaments, either by osmotic compression with dextran or by increasing the sarcomere length of permeabilized rabbit psoas fibers. Phosphorylation of regulatory light chains by incubation of permeabilized fibers with myosin light chain kinase and calmodulin, followed by low levels of activating calcium, potentiated tension development at resting or lower sarcomere lengths in the absence of dextran but had no additional effect on tension potentiation or development in fibers with decreased lattice spacing due to either osmotic compression or increased sarcomere length.  相似文献   

15.
We investigated in vivo expression of myosin heavy chain (MHC) isoforms, 17 kDa myosin light chain (MLC17), and phosphorylation of the 20 kDa MLC (MLC20) as well as mechanical performance of chemically skinned fibers of normal and hypertrophied smooth muscle (SM) of human myometrium. According to their immunological reactivity, we identified three MHC isoenzymes in the human myometrium: two SM-MHC (SM1 with 204 kDa and SM2 with 200 kDa), and one non-muscle specific MHC (NM with 196 kDa). No cross-reactivity was detected with an antibody raised against a peptide corresponding to a seven amino acid insert at the 25K/50K junction of the myosin head (a-25K/50K) in both normal and hypertrophied myometrium. In contrast, SM-MHC of human myomatous tissue strongly reacted with a-25K/50K. Expression of SM1/SM2/NM (%) in normal myometrium was 31.7/34.7/33.6 and 35.1/40.9/24 in hypertrophied myometrium. The increased SM2 and decreased NM expression in the hypertrophied state was statistically significant (P < 0.05). MHC isoform distribution in myomatous tissue was similar to normal myometrium (36.3/35.3/29.4). In vivo expression of MLC17a increased from 25.5% in normal to 44.2% in hypertrophied (P < 0.001) myometrium. Phosphorylation levels of MLC20 upon maximal Ca(2+)-calmodulin activation of skinned myometrial fibers were the same in normal and hypertrophied myometrial fibers. Maximal force of isometric contraction of skinned fibers (pCa 4.5, slack-length) was 2.85 mN/mm2 and 5.6 mN/mm2 in the normal and hypertrophied state, respectively (P < 0.001). Apparent maximal shortening velocity (Vmax(appt), extrapolated from the force-velocity relation) of myometrium rose from 0.13 muscle length s-1 (ML/s) in normal to 0.24 ML/s in hypertrophied fibers (P < 0.001).  相似文献   

16.
The ordered array of myosin heads, characteristic of relaxed striated muscle thick filaments, is reversibly disordered by phosphorylating myosin regulatory light chains, decreasing temperature and/or ionic strength, increasing pH, and depleting nucleotide. In the case of light chain phosphorylation, disorder, most likely due to a change in charge affecting the light chain amino-terminus, reflects increased myosin head mobility, thus increased accessibility to actin, and results in increased calcium sensitivity of tension development. Thus, interactions between the unphosphorylated regulatory light chain and the filament backbone may help maintain the overall order of the relaxed filament. To define this relationship, we have examined the structural and functional effects of such manipulations as exchanging wild-type smooth and skeletal myosin light chains into permeabilized rabbit psoas fibers and removing regulatory light chains (without exchange) from such fibers. We have also compared the structural and functional parameters of biopsied fibers from patients with severe familial hypertrophic cardiomyopathy due to a single amino acid substitution in the regulatory light chains to those exhibited by fibers from normal relatives. Our results support a role for regulatory light chains in reversible ordering of myosin heads and suggest that economy of energy utilization may provide for evolutionary preservation of this function in vertebrate striated muscle.  相似文献   

17.
The present study demonstrates that background or B-type calcium channel activity can be recorded in excised inside-out and cell-attached membrane patches from human atrial myocytes. In control conditions, with Ba2+ or Ca2+ as charge carrier, single-channel activity spontaneously appeared in irregular bursts separated by quiescent periods of 2-17 min, in nearly 25% of tested patches. Channel activity was recorded at steady-state applied membrane potentials including the entire range of physiological values, and displayed no "rundown" in excised patches. During activity, a variety of kinetic behaviors could be observed with more or less complex gating patterns. This type of channel activity was triggered or markedly increased when chlorpromazine (CPZ 20 or 50 microM) was applied to internal face of inside-out patches, with a proportion of active patches of approximately 25%. CPZ-activated channels were potential-independent in the physiological range of membrane potential. In 96 mM Ba2+ solution, three conductance levels: 23, 42 and 85 pS were routinely observed in the same excised membrane patch, sometimes combining to give a larger level. As previously observed by Wang et al. (1995) in membrane of rat ventricular myocytes, increasing free-radicals level and metabolic poisoning readily enhanced B-type channel activity in human atrial myocytes. Application of H2O2 (from 0.1-10 mM) in cell-attached mode induced an activation of Ba2+ permeable channel activity in a dose-dependent manner, with an estimated EC50 of 9.7 mM. In the same type of experiments, 10 mM deoxyglucose also induced similar Ba2+ permeable channel activity. When 500 microM CPZ were applied to myocytes studied in the whole-cell configuration and maintained at a holding potential of -80 mV in the presence of 5 mM external Ca2+, a noticeable inward current could be observed. The mean CPZ-activated current density determined from seven myocytes was 0.63 pA/pF.  相似文献   

18.
Myosin from cardiac muscle consists of two heavy chains and two pairs of light chain. Regulatory myosin light chain (RMLC) is phosphorylated by a Ca2+ and calmodulin dependent myosin light chain kinase. The impact of experimental myocardial infarction on cardiac RMLC was studied. The left anterior descending coronary artery of rabbits was ligated. Three, 7 and 14 days later the animals were euthanized, sections of the heart were frozen in liquid nitrogen and later subjected to 2-dimensional electrophoresis. Isoelectric focusing was carried out at a pH range of 4.5-5.4. Reproducible patterns of protein separation showed four spots with proteins of phosphorylatable regulatory light chains shifted to a more negative pH as compared to essential light chain. We investigated changes in phosphorylation of RMLC in infarcted heart muscle. As compared to sham operated animals, a decline in phosphorylation of RMLC was present in both infarcted and non-infarcted portions of the left ventricle; the latter was significant 7 days following the onset of ischemia. In contrast, the decline in percent phosphorylation in the infarcted area was not significant. The amount of RMLC decreased significantly in the infarcted portion. A highly significant reduction in the percent of viable cardiomyocytes accompanied the decline in phosphorylation. There was a significant correlation of RMLC following administration of isoproterenol, 7 and 14 days following onset of ischemia. Only faint traces of essential atrial myosin light chain (ALC-1) were present in the non-infarcted portion of the left ventricle. No correlation was found between percent phosphorylation and the amount of RMLC (density) following infusion of saline or isoproterenol. Isoproterenol significantly increased percent phosphorylation without altering the amount of RMLC protein. We conclude that myocardial infarction profoundly affects regulatory myosin light chain phosphorylation in the infarcted and non-infarcted areas of the myocardium and that RMLC plays a significant part in myocardial contractility.  相似文献   

19.
Platelet function in patients with NIDDM is enhanced. We have found that spontaneous aggregation (i.e., the formation of small-sized aggregates in the absence of agonist stimulation) occurs at a high rate in platelets from NIDDM patients. We then investigated basal myosin light chain 20 (MLC) phosphorylation, which plays a key role in platelet shape change and aggregation, using a monoclonal antibody against a phosphorylation site (serine 19 residue) in the MLC molecule in platelets from these patients. Standard calibration curves obtained from purified MLC or the phosphorylated form of myosin light chain 20 (MLC-P) were linear within the range of 0-150 ng for MLC and 0-3 ng for MLC-P. The amount of MLC or MLC-P in platelets was estimated, and basal MLC phosphorylation was calculated. Platelets were obtained from 9 young healthy control subjects, 13 age- and sex-matched nondiabetic control subjects, and 13 patients with NIDDM. The basal MLC phosphorylation in platelets was significantly higher in the NIDDM patients than in the control subjects, irrespective of age. These findings suggest that platelets from NIDDM patients are activated in vivo. Platelets obtained from NIDDM patients generated spontaneous aggregation, the degree of which was significantly higher than that in control subjects. Platelet spontaneous aggregation correlated well with basal MLC phosphorylation. These findings suggest that increases in basal MLC in platelets may be one factor leading to hyperaggregability of platelets in these patients.  相似文献   

20.
To identify the structural basis for the observed physiological effects of myosin regulatory light chain phosphorylation in skinned rabbit skeletal muscle fibers (potentiation of force development at low calcium), thick filaments separated from the muscle in the relaxed state, with unphoshorylated light chains, were incubated with specific, intact, myosin light chain kinase at moderate (pCa 5.0) and low (pCa 5.8) calcium and with calcium-independent enzyme in the absence of calcium, then examined as negatively stained preparations, by electron microscopy and optical diffraction. All such experimental filaments became disordered (lost the near-helical array of surface myosin heads typical of the relaxed state). Filaments incubated in control media, including intact enzyme in the absence of calcium, moderate calcium (pCa 5.0) without enzyme, and bovine serum albumin substituting for calcium-independent myosin light chain kinase, all retained their relaxed structure. Finally, filaments disordered by phosphorylation regained their relaxed structure after incubation with a protein phosphatase catalytic subunit. We suggest that the observed disorder is due to phosphorylation-induced increased mobility and/or changed conformation of myosin heads, which places an increased population of them close to thin filaments, thereby potentiating actin-myosin interaction at low calcium levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号