首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This paper describes the design and experimental results for a 3.2-V operation single-chip AlGaAs/GaAs heterojunction bipolar transistor (HBT) monolithic microwave integrated circuit (IMMIC) power amplifier for GSM900 and DCS1800 dual-band applications. The following two new circuit techniques are proposed for implementing the power amplifier. One is an on-chip HBT bias switch which in turn switches the amplifier between 900 and 1800 MHz. The proposed switch configuration allows the switch using a high turn-on voltage of 1.3 V of AlGaAs/GaAs HBT's to operate with a 3-V low supply voltage, because the switch circuitry needs no stacked configuration. The other is an active feedback circuit (AFB) to prevent permanent failure of HBT's in the output power stage even under severe conditions of oversupply voltage and strongly mismatching load. Experimental results revealed that the proposed feedback circuit, which works as a voltage limiter, can protect the output stage HBT's from an excessive collector voltage swing even when the amplifier is operated under a condition of a 5-V oversupply voltage and a 10:1 voltage standing-wave ratio (VSWR) mismatching load. Under a normal condition of 3.2 V and a 50-Ω matching load, the IC is capable of delivering an output power of 34.5 dBm and a power-added efficiency (PaE) of 52% in a GSM900 mode, and a 32-dBm output power and a 32% PAE in a DCS1800 mode  相似文献   

2.
对模数转换器中的传统开关电路的导通电阻进行了详细的理论分析,提出了一种互补型栅压自举开关电路.该电路结构相比于传统开关,通过少量的功耗代价换取了更优的频域性能,在不同工艺角下具有更好的鲁棒性,适用于先进工艺下的低电压工作环境.互补型栅压自举开关电路采用28 nm工艺设计,在1V的电源电压下,对800fF的负载电容进行速率为800 MS/s的采样,在低频输入下(181.25 MHz)实现的无杂散动态范围(SFDR)为89 dB,四倍奈奎斯特输入频率下(1 556 MHz)实现的SFDR为65 dB,开关电路面积为80 μm×20 μm.  相似文献   

3.
文章介绍了高功率半导体脉冲功率开关-反向开关晶体管(Reversely Switched Dynistor,RSD)的工作原理,分析了RSD脉冲功率电路的特性。由磁开关的电压电流,得到了磁开关的动态电感与电流的量化曲线,在MATLAB仿真平台,分别建立了磁开关动态电感模型、RSD脉冲功率电路模型。计算了主回路元件参数对RSD开关的预充时间TR的影响。计算结果表明,主回路电阻负载在0.01~1Ω变化时,TR变化很小,主回路电感和1Ω以上的主回路电阻对TR影响较明显,计算结果与实验结果最大误差为5%,表明通过低压试验结果的计算,可较准确地预测高压试验的TR。  相似文献   

4.
直流固态功率控制器控制技术   总被引:2,自引:0,他引:2  
钱燕娟  袁旺 《现代电子技术》2012,35(17):183-185,188
直流固态功率控制器是智能开关装置,采用功率MOS管作为直流负载接通或断开直流电源的开关器件,能够实现过载、短路、超温等保护功能。通过DC-SSPC对直流负载进行远程控制,可随时获知负载的工作模式和运行状态,具备健康诊断和实时监控功能。主要研究了直流固态功率控制器工作原理及主要关键技术,并通过原理样机验证了直流固态功率控制器设计的可行性。  相似文献   

5.
A 300 V power switch in a high-voltage CMOS technology compatible with a low-voltage MOS/bipolar technology is presented. This circuit can switch positive and negative 150 V pulses with rise and fall times of 100 ns for a 200 pF capacitive load. The switch has a low-voltage input control (/spl plusmn/15 V). Using earth-symmetrical non-overlapping high-voltage pulses as dynamic supply voltages, it is possible to reduce the power dissipation during the switching time considerably in comparison with the power dissipation of power switches, which use static (i.e., constant) supply voltages under the same conditions.  相似文献   

6.
Presents an ECL circuit with a Darlington configured dynamic current source and active-pull-down emitter-follower stage for low-power high-speed gate array application. The dynamic current source provides a large dynamic current during the switching transient to improve the power delay of the logic stage (current switch). A novel self-biasing scheme for the dynamic current source and the active-pull-down transistor with no additional devices and power in the biasing circuit is described. Based on a 0.8-μm double-poly self-aligned bipolar technology at a power consumption of 1 mW/gate, the circuit offers 28% improvement in the loaded (FI/FO=3, CL=0.3 pF) delay and 42% improvement in the load driving capability compared with the conventional ECL circuit. The design and scaling considerations of the circuit are discussed  相似文献   

7.
利用电荷泵自举原理,提出一种新颖的CMOS驱动电路。该电路在输入信号未进行开关操作时对电容充电,在开关操作发生时,由电荷泵电容和电源一起向负载电容充放电,从而可在不影响充放电时间的前提下降低电源对负载电容的充放电尖峰电流,减小电源噪声。该电路特别适合用来驱动采用高k介质或深槽隔离工艺的功率集成电路,可同时降低上升/下降沿时间和电源尖峰电流,并大幅减小芯片面积。采用中芯国际0.35μm标准CMOS工艺进行流片,测试结果表明,该电路可同时降低负载电容充放电尖峰电流与上升/下降沿时间。  相似文献   

8.
梁怀天  方舟  罗攀  易子皓  甄少伟  乔明  张波 《微电子学》2021,51(1):10-15, 21
提出了一种智能高侧功率开关的短路保护电路,包括输出短路检测电路、延时信号产生电路和栅源电压限制电路。采用NMOS管用作功率管,使电路短路时仍处于安全工作区内,提升了高侧功率开关的可靠性。采用0.6μm HV SOI工艺对该短路保护电路进行了仿真验证。仿真结果表明,在硬开关故障和负载短路两种情况下,功率管保持处于安全工作区内。  相似文献   

9.
PWM/PFM混合控制DC-DC变换器芯片的设计   总被引:5,自引:0,他引:5  
结合脉冲宽度调制(PWM)和脉冲频率调制(PFM)功率损耗特点,提出了一种降压型PWM/PFM混合控制DC-DC变换器芯片的电路结构,大大提高了全负载范围转换效率。重点讨论了混合控制策略和PWM/PFM切换电路的设计。Hspice模拟仿真结果验证了设计的正确性。  相似文献   

10.
A 1.2-μm VLSI BiCMOS technology has been used to implement a monolithic video track-and-hold amplifier that settles to an accuracy of 10 b in 15 ns. This level of performance is competitive with hybrid track-and-hold circuits and surpasses previously reported monolithic implementations by nearly two orders of magnitude. The amplifier's design is based on a closed-loop topology incorporating two BiCMOS folded-cascode gain stages, an NMOS sampling switch, and a BiCMOS switch driver with 1-ns transitions between ±4 V. The circuit operates from ±5-V power supplies and is capable of driving a 50-Ω load with ±1-V swings. For a fully differential implementation, the power dissipation is 1.2 W. The amplifier can be integrated either as a stand-alone track-and-hold circuit or as the front end of an analog-to-digital conversion system for video and high-speed instrumentation applications  相似文献   

11.
甘方成 《电子质量》2007,(12):28-30
本文利用PWM芯片TL494,来控制开关电源管IRFP460的导通和截止,利用单片机为控制核心的开关稳压电源,可以输出可调电压在30V-36V之间,最大输出电流为2A;通过键盘能对输出电压进行键盘设定和一伏的步进调整,并通过液晶显示器件显示电流和电压值,同时开关稳压电源具有过流与过压保护功能.  相似文献   

12.
功率因素过低对电网及负载有极大负面影响,在感性负载两端并接电容是常见的无功补偿方法。针对电磁开关和电力电子开关投切电容器在无功补偿装置应用中存在的问题,从分析功率因素补偿意义入手,提出三相共补开关拓扑结构及其电路模型,分析投切过程冲击电流形成机理及其避免对策。研制了一种基于AVR单片机在电压过零时投切并应用于低压无功补偿装置的复合开关。该复合开关的优点是电压过零时投切,冲激电流小;每相过零时触发中断,响应迅速快;采用了atmega16作为主控芯片,样机测试果表明达到设计之要求。  相似文献   

13.
The E-class mode of a power amplifier with a series (to the switch) forming circuit is investigated. An analysis of such an amplifier model is given. Formulas for the equivalent circuit elements are obtained. The load impedances of its switches on a fundamental frequency and on its harmonics are determined for the considered amplifier and for the device which forms a dual pair with it. The fundamental frequency compensation possibility for the capacitive part on the transistor switch output impedance is demonstrated. With the help of the described approach, the amplifier is developed for a frequency of 915 MHz with a drain efficiency of about 73.2% (PAE is about 71%) and the output power is about 7.32 W.  相似文献   

14.
为了解决航天器DC/DC变换器高压输入多路输出时,开关管电压应力以及多路输出稳定度问题,设计了一种基于UC1845的多路输出双管反激开关电源。主电路采用双管反激式变换器,使主开关管上的电压应力仅为输入电压Vin,满足航天器高可靠性的应用需求;同时电路采用磁隔离反馈稳压控制,通过一个反馈控制量实现多路输出,输出端配合应用低压差三端稳压器,各路输出负载稳定度优于±1%。控制电路采用电流型控制器UC1845,其具有电压调整率高、负载调整率高和瞬态响应快等优点。实验结果表明,该电源安全可靠、稳定性好、纹波小、效率高,达到了设计要求。  相似文献   

15.
This paper gives the theory and experimental results for a current-source parallel-resonant inverter with a transformer used to change voltage levels and provide isolation. The analysis is performed in the frequency domain using Fourier series techniques to predict output power, efficiency, DC-to-AC voltage transfer function, and component voltage and current stresses. The inverter consists of two switches, a large choke inductor, a transformer, and a parallel-resonant circuit. The magnetizing inductance of the transformer is used as the inductance of the parallel-resonant circuit, thereby requiring one less component. Each switch consists of a MOSFET in series with a diode. The MOSFETs have their sources grounded so there is no need for a complicated gate-drive circuit. An inverter was designed and constructed. The DC input voltage was 156 V and the output voltage was a sine wave with a peak value of 224 V at an operating frequency of 50 kHz. The output power at full load was 100 W  相似文献   

16.
针对当前使用NMOS固态功率电子开关的载人航天器智能配电系统存在NOMS隔离驱动控制电路占用大量硬件资源,且不能满足能源系统自主健康管理遥测信息采集需求的问题,文中提出了一种基于PMOS固态功率电子开关构建的智能配电系统设计方案。相对于NMOS,PMOS用于正线开关的非隔离驱动特性避免了配置隔离控制电路带来的系统资源代价问题,在简化硬件电路设计的同时获得了更多的遥测信息,解决了有限硬件资源与更多遥测参数需求的矛盾。针对SSPC负载短路保护特性带来的固态配电系统母线电压跳变问题,文中给出了提高固态配电器可靠性的辅助电路方案,可使负载短路保护故障不影响母线稳定。  相似文献   

17.
The analysis and design of a high-frequency forward DC/DC power converter topology with transformer flux balancing capability is presented. The converter utilizes a main switch for load current commutation and an auxiliary switch for transformer flux balancing. Moreover, the converter topology provides the means to recover the energy associated with the parasitic inductances of the circuit components, thus yielding high efficiency and allowing for high operating frequencies. Experimental results for a 1 kW, 20 kHz prototype unit are presented  相似文献   

18.
随着电子产品越来越趋于高频化、模块化和集成化,小体积和高效性及低电磁干扰(EMI)成为研究的主要课题。因此,LLC变换器在高频开关电源领域得到快速的发展应用。为了提高电路的功率转换效率,文中设计了负载并联变换器。单一的输出负载浪费了电路的转换功率,而负载并联LLC变换器通过负载输出模块的并联,大大提高了电路的功率效率。通过Saber和Simplorer仿真软件进行仿真,得出该LLC变换器在不同负载和输入电压变化的情况下,能保持稳定的输出特性和良好的调节功能,而且开关管和二极管可以实现相应的ZVS和ZCS,验证了理论的正确和可行性。  相似文献   

19.
本文实现了开关电源电路的实现,设计采用典型的反激式开关电源结构设计形式,以UC3842作为控制核心器件,运用脉宽调制的基本原理,并采用辅助电源供电方式为其供电,有利于增大主电源的输出功率。采用场效应管作为开关器件,其导通和截止速度很快,导通损耗小,为开关电源的高效性能提供保障。同时,电路中辅以过压过流保护电路,为系统的安全工作提供保障,本电路注意改善负载调整率,提高开关电源工作效率,降低开关电源输出纹波电压,降低电磁串扰,达到绿色环保的目的。输出电压可调,使其可适用于不同场合。  相似文献   

20.

The article presents the buck converter for the application on headlights of vehicle with chip-level design. The LED components are used as for lighting source, which near/far lights are controlled with high-current switching circuit in the chip. The level-shift circuit and its current driver is proposed to control the input of high-voltage power MOS. The bypass method is presented to reduce the transient time as load current changes suddenly. The input voltage widely ranges from 8 to 21 V while keeping a stable output voltage with 6 V. The chip current can output from 20 to 1500 mA with excellent regulation. This chip had been implemented with TSMC0.25 µm HV- process, and the size of the circuit layout is about 8.6 mm2, where includes power switch and far/near lighting switches. Measurements show that peak efficiency can achieve 86.3%. The power regulation is excellent, where the load regulation is only 0.3%, and the line regulation is only 0.5%.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号