首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
陶瓷薄膜制备技术研究进展   总被引:3,自引:0,他引:3  
陶瓷薄膜具有耐磨、耐蚀、耐高温和抗微生物侵蚀等性能,在航天、化工机械、生物医学等行业获得了广泛的应用,从而推动着陶瓷薄膜的材质和制备工艺不断发展.综述了微弧氧化、溶胶凝胶和电泳沉积等制备陶瓷薄膜常用工艺的研究进展,分析了工艺参数对陶瓷膜组织结构和性能的影响.目前,制备工艺正向着电子束、离子束和激光束之间的组合和其工艺间复合的方向发展,陶瓷薄膜正向着多元膜、多层膜、梯度膜和纳米复合膜方向发展.  相似文献   

2.
The measurement of absorptance is important for the analysis and modeling of laser-material interactions. Unfortunately, most of the absorptance data currently available consider only polished pure metals rather than the commercially available (unpolished, oxidized) alloys that are actually being processed in manufacturing. We present the results of absorptance measurements carried out at room temperature on as-received engineering grade nonferrous metals (Al, Cu, and Zn alloys). The measurements were made using an integrating sphere with a Nd:YLF laser at two wavelengths (1053 and 527 nm, which means that the results are also valid for Nd:YAG radiation at 1064 and 532 nm). The absorptance results obtained differ considerably from the existing data for polished, pure metals and should help improve the accuracy of laser-material interaction models. Some clear trends were identified. For all 22 cases studied the absorptance was higher than for ideal pure, polished metals. For all Al and Cu samples the absorptance was higher for the green than it was for the infrared wavelength, while for all Zn coatings this trend was reversed. No clear correlation between absorptance and surface roughness was found at low roughness values (Sa 0.15-0.60), but one rougher set of samples (Sa 2.34) indicated a roughness-absorptance correlation at higher roughness levels.  相似文献   

3.
S. Esposito  S. Aprea 《Thin solid films》2009,517(21):6000-6006
In terms of both high photo-thermal efficiency and high stability, multi-layer structures based on metal-dielectric composites (cermet) can be considered the most attractive selective solar absorbers for receiver tubes operating at medium-high temperatures in the field of solar thermodynamic plants. The double cermet layer approach represents a very simple fabrication method and can give high performances in terms of high solar absorptance and low hemispherical emittance. Optimised solar coatings based on cermet layers were fabricated in our laboratories by sputtering technique following the double layer approach. The joined employment of ellipsometric measurements and optical simulation is proposed as an effective method to optimise and fabricate coatings showing the best performances at a fixed operating temperature of the receiver tube. Interesting results concerning an optimised spectrally selective coating are shown. Solar absorptance higher than 0.94 and hemispherical emittance at 580 °C lower than 0.13 were obtained.  相似文献   

4.
Laser conditioning of LaF(3)/MgF(2) dielectric coatings at 248 nm   总被引:1,自引:0,他引:1  
Highly reflective LaF(3)/MgF(2) systems for a wavelength of 248 nm on MgF(2) and crystalline quartz substrates were investigated. The influence of laser conditioning on damage threshold and absorptance was remarkable in those coatings that had a high initial absorptance. Monitoring with a laser calorimeter revealed the conditioning effect to be a function of the irradiation dose rather than of energy density or pulse rate. Furthermore, x-ray photoelectron spectroscopy and transmission electron microscopy investigations showed that conditioning induces stoichiometric and structural changes in the multilayers, especially in near-surface sublayers, whereas scanning electron microscopy and atomic force microscopy investigations indicated that the surface remains unchanged.  相似文献   

5.
Specific features of the structure and phase composition of sprayed coatings were investigated. The main physical and mechanical properties of Ni and Fe based coatings are determined. The variation of the structure on different levels and of the phase composition of coating with the coating process subjected to the effect of strong ultrasound loading are examined. The consequences of laser and electron beam melting sprayed coatings are studied.  相似文献   

6.
Cobalt oxide coatings with an integrated solar absorptance of 0.93 and a hemispherical emittance at 100°C of 0.14 were prepared by spray pyrolysis on stainless steel substrates kept at 300°C. The coatings are strongly adherent and stable up to temperatures of about 600°C. Auger electron spectroscopy, X-ray photoelectron spectroscopy and X-ray and electron diffraction investigations revealed the coatings to be composed of an upper layer of Co3O4 and subsequent layers of CoO down to the substrate. The absorption mechanism is primarily intrinsic. Lower substrate temperatures (about 150°C) can be used for preparing coatings from equimolar aqueous solutions of cobaltous acetate and thiourea. Such coatings, containing both cobalt oxide and cobalt sulphide, have a comparable absorptance but a higher emittance and are stable only up to about 300°C.  相似文献   

7.
Abstract

In this paper, the influence of beam polarisation in the laser bending process was experimentally studied. Based on the laser beam polarisation, the laser absorption of the metallic specimen could be enhanced by increasing the incident angle. The bending angles are achieved in stainless foil specimens without absorptive coatings, and larger bending angles can be produced by single laser scanning with higher incident angles. Multipass laser bending experiments were also carried out on the same material with graphite coatings. The results show that the bending angle per pass is affected obviously by the beam polarisation at lower laser line energy; and the bending angle per pass increases significantly when the total bending angle is large enough. When using polarised light, the laser beam distortion and laser absorption change induced by the variation of the absorptive coatings and laser incident angle are the two main factors that affect the coupled laser energy. The bending rule is the synthesis effect of the two factors.  相似文献   

8.
In this paper, we design a polarization-independent and broadband microwave metamaterial absorber (MMA) based on three-dimensional structure. The simulated results show that the proposed absorber has a broad absorptance band from 60.4 to 100.0 GHz with the absorptance efficiency over 90%. The effective medium theory (EMT), electric field, surface current and power loss density distributions are adopted to explain the physical mechanism of the perfect absorptance. In addition, the absorptance differences can be observed between transverse electric (TE) wave and transverse magnetic (TM) wave at oblique incidence. The proposed absorber can be utilized in many applications such as perfect absorbers and radomes.  相似文献   

9.
采用等离子喷涂法制备了黑铬太阳能选择性吸收涂层,采用XRD、SEM等测试方法对涂层的物相、微观结构、太阳能吸收性能进行了表征。对涂层进行了打磨,并在涂层表面制备SnO2选择性透过薄膜。研究表明,采用等离子喷涂方法制备的黑铬涂层吸收率为0.93,发射率为0.88,经打磨处理后,发射率降至0.76。添加SnO2薄膜后,涂层吸收率变化小,发射率降至0.50。热震实验表明该涂层具备良好的抗热震性能。  相似文献   

10.
In this study theoretical principles underlying the photothermal displacement (“thermal mirror”) method for measuring physical properties of opaque multilayered and functionally graded coatings with low thermal conductivity are analyzed. In this method, the specimen is locally heated by a power laser beam, and a two-dimensional transient temperature field is formed in a specimen. The physical basis for the photothermal displacement method is the non-stationary buckling and displacement of an irradiated surface due to a non-uniform thermal expansion. The surface is monitored by a low-power probe beam of a second laser, which is reflected from the specimen, i.e., the system operates as a convex “thermal mirror.” The photoinduced displacement varies with time, and the probe beam is reflected at a different angle depending on the slope of the displacement. The deflection angle is measured as a function of time by a position sensor, and the results of these measurements are compared with the theoretical dependence of the deflection angle on time and physical properties of a coating. This dependence was determined analytically from the solution of the two-dimensional thermal elasticity problem. It is shown that for the specimen composed of a substrate and a coating it is feasible to determine the properties of the coating, e.g., the thermal diffusivity and coefficient of linear thermal expansion provided that the analogous properties of the substrate are previously measured or otherwise known.  相似文献   

11.
D. Wu  C. Liu  M.K. Lei 《Vacuum》2008,83(1):198-200
ZrO2 ceramic coatings, which often call thermal barrier coatings (TBCs), fabricated by electron beam physical vapor deposition (EB-PVD), are widely used in high-temperature environment of aircraft and industry gas-turbine engines, because of the excellent strain tolerance imparted by the columnar structure. However, channels separating the columnar grains in EB-PVD TBCs provide paths for oxygen or other aggressive species from ambient atmosphere into the bond coat, resulting in the premature spallation-failure during high-temperature service. In our previous study, high-intensity pulsed ion beam (HIPIB) technique has been proposed to modify the EB-PVD TBCs, where a melted, densified top layer can be produced as a result of extremely thermal effect induced by the HIPIB irradiation. In this paper, HIPIB melting process is investigated numerically using a physical model based on experimental data, taking into account the surface morphology of HIPIB-melted TBCs to explore the mechanism of interaction between HIPIB and the coatings. Deposition process of the beam energy in TBCs was simulated by Monte Carlo method, and the non-linear equations describing the thermal conducting process were solved numerically based on the deposited energy to obtain the evolution of the temperature field of TBCs. The calculated melting depth of irradiated EB-PVD TBCs is consistent with results obtained in the HIPIB irradiation experiments.  相似文献   

12.
在沉积不锈钢-氮化铝(SS-AlN)金属陶瓷太阳吸收集热管的磁控溅射三靶镀膜机上,安装了UPS03反应溅射闭环控制单元,实现反应溅射Al2O3稳定反馈控制。采用国产直流电源在Al靶表面处于过渡态下,成功制备了吸收几乎为零的Al2O3薄膜。溅射功率在14kW时,反应溅射沉积Al2O3的靶电压波动可长时间稳定控制在±3 V范围内,沉积速率为5.4 nm/(min·kW),约为Al靶在无反应气体溅射下沉积Al薄膜速率的74%。采用Al2O3代替AlN作为减反射层,应用到SS-AlN太阳选择性吸收涂层中,进一步提高了复合膜的太阳光学性能,太阳吸收比由AlN作为减反射层的0.956提高到0.965,红外发射比不变,仍为0.044。  相似文献   

13.
Efficient photothermal converters exhibit high solar absorptance and low thermal emittance. An original method has allowed spectrally selective coatings to be obtained by chemical conversion of stainless steel. These coatings exhibit high selectivity (absorptance higher than 95 % and emittance lower than 20 %) and excellent durability.The dependance of the optical properties of these coatings on the chemical composition and metallurgical state of the substrate is studied. Low emittance appeared to be closely related to the corrosion resistance of the metallic surface in the treatment bath. Owing to this fact, convenient conditions can be found to produce selective coating for each alloy.  相似文献   

14.
A comparative study is made of the laser damage resistance of hafnia coatings deposited on fused silica substrates with different technologies: electron beam deposition (from Hf or HfO(2) starting material), reactive low voltage ion plating, and dual ion beam sputtering. The laser damage thresholds of these coatings are determined at 1064 and 355 nm using a nanosecond pulsed YAG laser and a one-on-one test procedure. The results are associated with a complete characterization of the samples: refractive index n measured by spectrophotometry, extinction coefficient k measured by photothermal deflection, and roughness measured by atomic force microscopy.  相似文献   

15.
A highly efficient Talbot array illuminator for single-shot, laser-induced-damage test measurements of optical thin-film coatings is proposed. With a periodic binary phase grating, a laser beam is transformed into an ensemble of Gaussian-like spots, which are known as the Fresnel image of the grating. For this purpose hexagonal phase gratings were fabricated and analyzed. With a peak fluence distribution of ~1 order of magnitude, the damage threshold of thin films can be deduced by use of the data from only a single shot.  相似文献   

16.
Wang Y  Li B 《Applied optics》2011,50(9):C264-C273
In the international standard (International Organization for Standardization 11551) for measuring the absorptance of optical components (i.e., laser calorimetry), the absorptance is obtained by fitting the temporal behavior of laser irradiation-induced temperature rise to a homogeneous temperature model in which the infinite thermal conductivity of the sample is assumed. In this paper, an accurate temperature model, in which both the finite thermal conductivity and size of the sample are taken into account, is developed to fit the experimental temperature data for a more precise determination of the absorptance. The difference and repeatability of the results fitted with the two theoretical models for the same experimental data are compared. The optimum detection position when the homogeneous model is employed in the data-fitting procedure is also analyzed with the accurate temperature model. The results show that the optimum detection location optimized for a wide thermal conductivity range of 0.2-50W/m·K moves toward the center of the sample as the sample thickness increases and deviates from the center as the radius and irradiation time increase. However, if the detection position is optimized for an individual sample with known sample size and thermal conductivity by applying the accurate temperature model, the influence of the finite thermal conductivity and sample size on the absorptance determination can be fully compensated for by fitting the temperature data recorded at the optimum detection position to the homogeneous temperature model.  相似文献   

17.
Optical coatings for deuterium fluoride chemical laser systems   总被引:1,自引:0,他引:1  
Xiong S  Zhang Y 《Applied optics》1997,36(21):4958-4961
The high-power laser system has brought an interesting challenge to the development of optical coatings. A wide variety of coating specifications that are often contradictory have to be fulfilled. The choices of deposition process as well as coating materials are critical to coating loss, damage threshold, long-term stability, and other optical properties. A number of optical coatings being newly applied to deuterium fluoride laser systems are presented. The 3.8-mum laser reflection coatings with high damage threshold, multichromatic beam splitters, antireflection coatings with widely separated dual-wavelength bands, and 0.55-14-mum wide-band reflective coatings have been developed on substrates such as Si, Mo, fused silica, chemical vapor deposition ZnSe. Superior results have been obtained with ion-assisted deposition and electron-beam evaporation. Approaches to coating design and practical aspects of coating development are also discussed.  相似文献   

18.
Optical thin films have to fulfil high quality requirements, which can be achieved for example by reactive low voltage ion plating (RLVIP). But especially for applications in precision optics, additional treatments are necessary to reduce residual optical absorption and compressive stress arising in the coatings, and to enhance the stability of the coatings – specifically for laser applications. In practice, post deposition heat treatment and backside coatings are mostly used to overcome these problems. In order to provide alternative methods to handle the disadvantages of the RLVIP‐process, the idea was to replace the mentioned steps by a laser treatment. This means that a laser beam is directed onto the sample after deposition or even during the coating process. In this study, the influence of a high power CO2‐laser beam on thin Nb2O5‐ and HfO2‐films was investigated. The effects on the refractive index and the film thickness are presented for different energy densities of a TEA‐CO2‐laser beam (10.59μm). For Nb2O5‐films a thickness increase up to 12.2nm (6.4 %) and a refractive index decrease of 0.074 (3.1 %) were found. In case of HfO2 the values were 2.3nm (1.2 %) in thickness and 0.007 (0.3 %) in refractive index. From the observed changes also distinct impacts on the film stress can be expected. One intention of this research was also to call attention to an alternative technique for enhancement of thin film properties.  相似文献   

19.
高温防护涂层研究进展   总被引:16,自引:0,他引:16  
高温防护涂层在防止航空涡轮发动机抗高温腐蚀以及延长发动机寿命方面起着越来越重要的作用。电子束物理气相沉积和等离子喷涂是目前制备高温涂层的两种最重要方法。本文综述了高温涂层国内外研究的进展,介绍了几种新型高温防护涂层,讨论了涂层使用的局限性及其发展前景。  相似文献   

20.
Old rules useful to the designer of optical coatings Optical coatings are usually composed of multilayer film structures which are used to obtain a desired transmittance, reflectance and absorptance from a surface. The spectral characteristic may be due to the intrinsic property of the material (e.g. metal reflectors) or due to interference effects arising from the multilayer stack. The following is a set of guidelines (“old rules”) useful to the designer of optical systems of which coated surfaces are an integral part.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号