首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Waste cooking oil methyl ester (WCOME) was winterised at 1, 0, −1 and −2°C following a 4×2 factorial design with one replication per cell. The process was carried out by filtration and both the filtrate (solid phase) and the liquid phase were analysed by gas chromatography (GC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Cold filter plugging point (CFPP) and calorific values were measured.Temperatures of 0 and −1°C in conjunction with the quickest cooling rate (0.1°C min−1) and 15-24 h of cooling gave the most successful results in terms of fuel properties.Improvements in the low temperature properties of the winterised fuel were reflected by a reduction of saturated fatty acid methyl esters (SFAME) in the composition by 1.5-6%, by a decrease in the CFPP values by 2-4°C and by a shift of the DSC high temperature melting peak (approx. 5°C) towards lower temperatures in comparison to the original fuel. Calorific values of the winterised WCOME did not significantly change and boiling temperatures increased (approx. 26%) in comparison to the non-winterised WCOME.  相似文献   

2.
In this paper, the isothermal compressibility coefficient, the cubic expansion coefficient and the propagation speed of pressure waves of waste oil methyl ester (WOME) and diesel oil (DO) are presented. These properties can be derived mathematically from the specific volume, the only property measured in this work (from 288.15 to 328.15 K and from atmospheric pressure to 350 MPa). The modified Tait–Tammann Equation has been adjusted to the experimental data with a high correlation coefficient and confidence level. Because of their different physical properties, the use of WOME instead of DO can affect the behaviour of some diesel equipments and, for instance, the economic efficiency and the behaviour of heat engines.  相似文献   

3.
This work presents the physical-chemical properties of fuel blends of waste cooking oil biodiesel or castor oil biodiesel with diesel oil. The properties evaluated were fuel density, kinematic viscosity, cetane index, distillation temperatures, and sulfur content, measured according to standard test methods. The results were analyzed based on present specifications for biodiesel fuel in Brazil, Europe, and USA. Fuel density and viscosity were increased with increasing biodiesel concentration, while fuel sulfur content was reduced. Cetane index is decreased with high biodiesel content in diesel oil. The biodiesel blends distillation temperatures T10 and T50 are higher than those of diesel oil, while the distillation temperature T90 is lower. A brief discussion on the possible effects of fuel property variation with biodiesel concentration on engine performance and exhaust emissions is presented. The maximum biodiesel concentration in diesel oil that meets the required characteristics for internal combustion engine application is evaluated, based on the results obtained.  相似文献   

4.
本文对碱均相催化制备生物柴油工艺进行研究,考察了主要工艺参数R(醇油比)、O(催化剂浓度)、T(反应温度)、t(反应时间)对生物柴油得率的影响。结果表明:在碱催化条件下,工艺参数的最优组合为R=30:1、e=1.0%、T=60℃、t=40min,最高生物柴油得率为89.06%。生物柴油的实测密度、粘度、闪点(闭口)分别为0.875g//mm3、4.7est、133℃。  相似文献   

5.
甲醇钠催化地沟油制备生物柴油研究   总被引:2,自引:0,他引:2  
赵华  李会鹏 《化工科技》2011,19(6):19-22
以浓硫酸为催化剂,高酸值地沟油与甲醇酯化反应降酸的最优工艺条件为:n(甲醇):n(地沟油)=9:1,m(浓硫酸):m(地沟油)=1.1%,反应温度60℃,反应时间5h.制备生物柴油的最优工艺条件为:以甲醇钠为催化剂,反应时间2h,反应温度65℃,n(甲醇):n(地沟油)=7:1,m(甲醇钠):m(地沟油)=0.8%.制...  相似文献   

6.
废弃油脂制备煤泥捕收剂的研究   总被引:1,自引:0,他引:1  
通过小筛分试验和可浮性试验,说明煤泥易泥化,细泥含量高,黏附、夹带严重,导致精煤灰分偏高;煤泥属难浮煤种。采用废弃油脂制备煤泥浮选捕收剂,并进行实验室浮选试验,同时分析药剂作用机理。煤泥浮选试验表明:在精煤灰分相近的条件下,生物柴油对煤泥的捕收性要低于柴油和煤油。当柴油、煤油与生物柴油分别以质量比1∶9复合时,煤泥浮选效果较好,精煤产率分别比生物柴油提高10.52%和9.06%,浮选完善度分别提高5.32%和4.33%。GC-MS分析表明:制备的浮选捕收剂中含有不饱和结构—C=C—、含氧官能团O||—C—和疏水性较强的长链烷烃。生物柴油与非极性烃类油组合用作捕收剂时,主要存在共吸附和促进吸附两种吸附机理,提高了煤泥可浮性,促进药剂在煤浆中分散,增大药剂与煤粒表面的接触概率,降低药耗。  相似文献   

7.
Screening and catalytic activity of alkaline modified zirconia i.e. Mg/ZrO2, Ca/ZrO2, Sr/ZrO2, and Ba/ZrO2 as heterogeneous catalyst in biodiesel production from waste cooking oil (WCO) have been investigated. The catalysts were prepared via wet impregnation of alkaline nitrate salts supported on zirconia. Physico-chemical characteristics of the catalysts were analyzed by BET surface area, XRD, FESEM and CO2–NH3–TPD. Among the catalysts screened, Sr/ZrO2 exhibited higher catalytic activities. Characterization results disclosed Sr/ZrO2 catalyst possessed balanced basic and acid site concentrations with its pore volume, surface area as well as pore diameters suitable for biodiesel production. The balanced active sites facilitated simultaneous transesterification and esterification of WCO. A plausible mechanism has been suggested for the simultaneous reactions. The effects of operating process conditions such as methanol to oil molar ratio, reaction temperature and catalyst loading on biodiesel production in the presence of Sr/ZrO2 were investigated. Methyl ester (ME) yield at 79.7% was produced over 2.7 wt.% catalyst loading (Sr/ZrO2), 29:1 methanol to oil molar ratio, 169 min of reaction time and 115.5 °C temperature.  相似文献   

8.
Yong Wang  Shun Ma  Lina Kuang  William W. Riley 《Fuel》2011,90(3):1036-1040
The use of surfactants and detergent fractionation to improve the cold flow properties of biodiesel from waste cooking oil (BWCO) was investigated. The effect of five types of surfactants, including sugar esters (S270 and S1570), silicone oil (TSA 750S), polyglycerol ester (LOP-120DP) and diesel conditioner (DDA) on the reduction of the cold filter plugging point (CFPP) of the BWCO, was evaluated, with the greatest reduction to the CFPP of the BWCO (from −10 °C to −16 °C) being was achieved by the addition of 0.02 wt% of polyglycerol ester (LOP-120P). Detergent fractionation of the BWCO was performed by first mixing partially crystallized biodiesel with a chilled detergent (sodium dodecylsulfate) solution accompanied by an electrolyte (magnesium sulfate), and then separating the mixture by centrifugation to obtain the BWCO liquid. An orthogonal experimental design was utilized to investigate the effects of the various parameters on detergent fractionation. The optimal parameters, as obtained by range analysis, were as follows: detergent loading 0.3 wt%, electrolyte loading 1.0 wt%, and water loading 150 wt%. The CFFP of the liquid biodiesel from waste cooking oil (LBWCO) was −17 °C with a yield of 73.1% when the detergent fractionation was performed under these conditions. A limited number of biodiesel physical and chemical properties were analyzed before and after the addition of surfactants and detergent fractionation.  相似文献   

9.
In this comparative study, conversion of waste cooking oil to methyl esters was carried out using the ferric sulfate and the supercritical methanol processes. A two-step transesterification process was used to remove the high free fatty acid contents in the waste cooking oil (WCO). This process resulted in a feedstock to biodiesel conversion yield of about 85-96% using a ferric sulfate catalyst. In the supercritical methanol transesterification method, the yield of biodiesel was about 50-65% in only 15 min of reaction time. The test results revealed that supercritical process method is probably a promising alternative method to the traditional two-step transesterification process using a ferric sulfate catalyst for waste cooking oil conversion. The important variables affecting the methyl ester yield during the transesterification reaction are the molar ratio of alcohol to oil, the catalyst amount and the reaction temperature. The analysis of oil properties, fuel properties and process parameter optimization for the waste cooking oil conversion are also presented.  相似文献   

10.
Used cooking oil (UCO) was mixed with canola oil at various ratios in order to make use of used cooking oil for production of biodiesel and also lower the cost of biodiesel production. Methyl and ethyl esters were prepared by means of KOH-catalyzed transesterification from the mixtures of both the oils. Water content, acid value and viscosity of most esters met ASTM standard except for ethyl esters prepared from used cooking oil. Canola oil content of at least 60% in the used cooking oil/canola oil feedstock is required in order to produce ethyl ester satisfying ASTM specifications. Although ethanolysis was proved to be more challenging, ethyl esters showed reduced crystallization temperature (−45.0 to −54.4 °C) as compared to methyl esters (−35.3 to −43.0 °C). A somewhat better low-temperature property of ester was observed at higher used cooking oil to canola oil ratio in spite of similar fatty acid compositions of both oils.  相似文献   

11.
The use of metakaolinite as a catalyst in the transesterification reaction of waste cooking oil with methanol to obtain fatty acid methyl esters (biodiesel) was studied. Kaolinite was thermally activated by dehydroxylation to obtain the metakaolinite phase. Metakaolinite samples were characterized using X-ray diffraction, N2 adsorption-desorption, simultaneous thermo-gravimetric analyse/differential scanning calorimetry (TGA/DSC) experiments on the thermal decomposition of kaolinite and Fourier-transform infrared spectrometer (FTIR) analysis. Parameters related to the transesterification reaction, including temperature, time, the amount of catalyst and the molar ratio of waste cooking oil to methanol, were also investigated. The transesterification reaction produced biodiesel in a maximum yield of 95% under the following conditions: metakaolinite, 5 wt-% (relative to oil); molar ratio of oil to methanol, 1∶23; reaction temperature, 160°C; reaction time, 4 h. After eight consecutive reaction cycles, the metakaolinite can be recovered and reused after being washed and dried. The biodiesel thus obtained exhibited a viscosity of 5.4?mm2?s–1 and a density of 900.1 kg?m–3. The results showed that metakaolinite is a prominent, inexpensive, reusable and thermally stable catalyst for the transesterification of waste cooking oil.  相似文献   

12.
The free fatty acids (FFAs) of waste cooking oil (WCO) are readily esterified with crude glycerol in the presence of the solid superacid SO/ZrO2–Al2O3. This reaction lowers the acidity of WCO before biodiesel production. The solid superacid SO/ZrO2–Al2O3 catalyzes both FFA esterification and TAG glycerolysis during the reaction. The conversion of FFA in the WCO with an acid value of 88.4 ± 0.5 mg KOH/g to acylglycerols was 98.4% under optimal conditions (mole ratio of glycerol to FFA = 1.4:1; reaction time = 4 h; reaction temperature = 200°C; catalyst loading = 0.3 wt%) obtained through an orthogonal experiment. The final FAME product with a FAME content of 96.9 ± 0.3 wt% yield was 94.8 wt%, after transesterification of the esterified WCO with methanol, catalyzed by potassium hydroxide. The FAME composition of the products produced by transesterification were identified and quantified by GC–MS. The results suggest that this new glycerol esterification process, using a solid superacid catalyst, affords a promising method to convert oils with high FFA levels, like WCO, to biodiesel. The process has the inherent advantage of easy separation steps for removing excess alcohol and significant savings in energy, when compared to acid catalyzed reactions with methanol to lower acidity. Practical applications : In this work, WCO with a high acid value was esterified with crude glycerol catalyzed by solid super acid, whose formula was expressed as SO/ZrO2–Al2O3. There are distinct advantages to this new esterification process, which include easy separation of the excess crude glycerol by sedimentation or centrifugation, the use of the low cost reactant crude glycerol direct from the byproducts of transesterification, the potential to achieve a very low content of FFAs by post‐refining to improve the yield of the final product, and time and energy saving are found as compared to the traditional methanol esterification process. This new technology provides a promising alternative method for processing feedstocks of high acid value, such as WCO, for the production of biodiesel.  相似文献   

13.
The present study reports the results of kinetics study of acid base catalyzed two step transesterification process of waste cooking oil, carried out at pre-determined optimum temperature of 65 °C and 50 °C for esterification and transesterification process respectively under the optimum condition of methanol to oil ratio of 3:7 (v/v), catalyst concentration 1%(w/w) for H2SO4 and NaOH and 400 rpm of stirring. The optimum temperature was determined based on the yield of ME at different temperature. Simply, the optimum concentration of H2SO4 and NaOH was determined with respect to ME Yield. The results indicated that both esterification and transesterification reaction are of first order rate reaction with reaction rate constant of 0.0031 min− 1 and 0.0078 min− 1 respectively showing that the former is a slower process than the later. The maximum yield of 21.50% of ME during esterification and 90.6% from transesterification of pretreated WCO has been obtained. This is the first study of its kind which deals with simplified kinetics of two step acid-base catalyzed transesterification process carried under the above optimum conditions and took about 6 h for complete conversion of TG to ME with least amount of activation energy. Also various parameters related to experiments are optimized with respect to ME yield.  相似文献   

14.
15.
Biodegradation of waste cooking oil and its application as lipase production inducer in cultures of Yarrowia lipolytica CECT 1240 have been investigated, both in shake flasks and a bench‐scale bioreactor. The ability of this strain to degrade the spent oil was evaluated by monitoring COD throughout the cultures, and a remarkable decrease was recorded (almost 90% decrease in oil COD after 3 days in bioreactor). Moreover, the addition of waste cooking oil to the medium led to a significant augmentation in extracellular lipase production by the yeast, compared to oil‐free cultures. This confirms the suitability of the studied residue as an inducer of lipase biosynthesis, which is a very interesting fact, from an economic standpoint. These results were confirmed when a fed‐batch strategy was proposed. Finally, some properties of the crude enzyme were studied, and compared to the enzymes obtained when non‐used oil was added to the medium. Practical application : New strategies to valorize wastes from the food and agro industries are attracting a great scientific interest due to the important advantages offered from an economic and environmental point of view. For this reason, the yeast Yarrowia lipolytica CECT 1240 is proposed for degrading waste cooking oils. This approach entails also another benefit in terms of lipolytic enzyme synthesis, since the addition of used up oils has a lipase inducer effect. The enormous interest in lipases is reflected in the number of applications that they present. The process was successfully carried out both in shake flasks and a bench‐scale bioreactor, allowing producing high levels of lipolytic activity at the same time that the COD was diminished up to nearly 90%.  相似文献   

16.
In this study, the Transesterification Double Step Process (TDSP) for the production of biodiesel from vegetable oil was modified to yield a shorter reaction time and products with improved quality. TDSP consists in a two step transesterification procedure which starts with a basic catalysis, followed by an acidic catalysis. The process modifications included a reduction in the concentration of catalysts, a reduction in the reaction time of the first step and the direct mixing of methanol/acid solution, without cooling the system between the first and second step. A comparison between washed and unwashed biodiesel demonstrates that the final washing and drying procedure is necessary for satisfactory results. The products were analyzed by 1H-NMR and nineteen different biodiesel analyses specific for international quality certification. The modified procedure resulted in a high conversion index (97% for waste cooking oil and soybean oil and 98% for linseed oil) and high yield (87 ± 5% for waste cooking oil, 92 ± 3% for soybean and 93 ± 3% for linseed oil). The biodiesel produced by the modified TDSP met ASTM, EN ISO and ABNT standards before the addition of stabilizer.  相似文献   

17.
为研究地沟油中的长链脂肪酸酯化反应动力学以及反应条件对反应速率的影响,以甲基磺酸催化高酸值地沟油与甲醇的酯化反应为研究体系,反应中甲醇被持续通入地沟油中,同时不断蒸出未反应完的甲醇与生成的水。测定地沟油与甲醇酯化反应速率常数,结果表明,甲基磺酸催化高酸值地沟油与甲醇的酯化反应为一级反应,反应活化能为76.06 kJ·mol-1,提高甲醇流量、催化剂用量和反应温度都能提高反应速率。  相似文献   

18.
利用餐厨废弃油脂经磺化反应合成了生物油磺酸盐,并与碳酸钠进行复配,测定了复配体系的界面活性、动态界面张力、界面张力稳定性和分配性能。结果表明,生物油磺酸盐的平均分子量为393,属于水溶性;生物油磺酸盐与碳酸钠的复配体系具有较宽的界面活性范围和较好的界面张力稳定性。在碳酸钠质量分数为0.4%~0.8%范围内,能降低油水界面张力至10~(-3)m N/m。随着碳酸钠质量分数增加,复配体系与原油的最低界面张力呈现先减小后增大的趋势,碳酸钠最佳质量分数为0.6%。放置90 d后,最低界面张力基本上保持在10~(-3)m N/m。碳酸钠质量分数一定时,随着生物油磺酸盐质量分数增加,生物油磺酸盐在油水两相中的分配系数降低,当质量分数大于0.25%后,分配系数降幅变小。生物油磺酸盐质量分数一定时,随着碳酸钠质量分数增加,生物油磺酸盐在油水两相中的分配系数增大,增幅较小。  相似文献   

19.
餐饮油烟催化净化技术的研究进展   总被引:1,自引:0,他引:1  
油烟污染控制是近年来人们关注的重点,介绍油烟的形成过程以及油烟的成分分析,表明油烟主要成分是脂肪酸、烷烃和烯烃等,其次是醛类、酯类、醇类及多环芳烃等。探讨当前油烟净化处理的多种方式,着重对催化转化法的研究现状进行阐述。  相似文献   

20.
Shaoyang Liu 《Fuel》2010,89(10):2735-2740
Efficient biodiesel conversion from waste cooking oil with high free fatty acids (FFAs) was achieved via a two-stage procedure (an acid-catalyzed esterification followed by an alkali-catalyzed transesterification) assisted by radio frequency (RF) heating. In the first stage, with only 8-min RF heating the acid number of the waste cooking oil was reduced from 68.2 to 1.64 mg KOH/g by reacting with 3.0% H2SO4 (w/w, based on oil) and 0.8:1 methanol (weight ratio to waste oil). Then, in the second stage, the esterification product (primarily consisting of triglycerides and fatty acid methyl esters) reacted with 0.91% NaOH (w/w, based on triglycerides) and 14.2:1 methanol (molar ratio to triglycerides) under RF heating for 5 min, and an overall conversion rate of 98.8 ± 0.1% was achieved. Response surface methodology was employed to evaluate the effects of RF heating time, H2SO4 dose and methanol/oil weight ratio on the acid-catalyzed esterification. A significant positive interaction between RF heating time and H2SO4 concentration on the esterification was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号