首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
设计了无功优化控制系统的软件体系结构,建立了动态无功优化数学模型。提出的高压配电网无功优化控制基于现有地调自动化系统,在母线负荷预测的基础上,利用遗传算法求解整个电网的无功优化问题,得到的优化结果为各个变电站VQC的合理限值。该方法将全局优化与VQC分散控制的优点结合起来,克服了各变电站无功、电压就地最优控制的弊端,节电效益显著。在某地区电网的应用中验证了该系统和方法的有效性,经过优化计算,在满足电压约束和控制设备动作次数限制的条件下,降低了电能损耗,有功损耗比优化前下降约3%。  相似文献   

2.
电力系统无功优化问题是一个多变量、多约束的混合非线性规划问题,其操作变量既有连续变量又有离散变量,其优化过程比较复杂。遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应的全局优化搜索算法,可用于解决含有离散变量的复杂优化问题。本文选用遗传算法求解电力系统无功优化问题,并对基本遗传算法的编码、初始种群、适应度函数和交叉、变异策略等进行改进,使用本文提出的改进算法对IEEE1 4节点进行无功优化计算,结果证明本文模型和算法的实用性、可靠性和优越性。  相似文献   

3.
该文阐述了将遗传算法应用于电力系统无功优化模块中,目的是可以有效地降低电力系统网络有功损耗.提高系统的电压合格率.从而降低电力网络运行费用,提高供电质量。  相似文献   

4.
遗传算法是一种模拟生物进化过程的优化算法,可用于求解包含离散化变量的复杂优化问题,是近些年发展起来的基于自然选择规律的一种优化方法.本文提出了一种应用于电力系统无功优化问题的改进遗传算法,该算法在一般遗传算法的基础上,对适应函数、编码方式以及变异操作等方面作了改进.经电力系统的无功优化问题实例计算表明,改进遗传算法的优化结果可以更有效地达到或接近全局最优.  相似文献   

5.
一种基于遗传算法的电力系统无功优化规划   总被引:1,自引:1,他引:0  
遗传算法是一种基于自然选择规律的优化方法。文章针对电力系统长期存在的无功优化问题,提出了基于遗传算法的无功优化规划算法。该方法弥补了以往无功补偿规划没有考虑系统最小负荷方式和事故情况下无功补偿要求、以及不同年份下由于负荷变化对补偿有不同要求的缺陷。计算结果表明该算法合理、有效。  相似文献   

6.
该文阐述了将遗传算法应用于电力系统无功优化模块中,目的是可以有效地降低电力系统网络有功损耗,提高系统的电压合格率,从而降低电力网络运行费用,提高供电质量。  相似文献   

7.
针对传统粒子群算法易陷入局部最优解、收敛速度慢的缺点,提出了柯西粒子群算法,并首次将其应用于电力系统无功优化问题.柯西粒子群算法是基于柯西分布的期望和方差均不存在的原理,对每一代粒子的全局极值进行柯西变异,以此来增加种群的多样性,扩大全局最优粒子的搜索区域,以尽快获得适应度更优的个体,从而可以避免算法陷入局部最优解,同...  相似文献   

8.
针对电力系统无功优化的特点,本文提出以有功网损最小为目标函数,以负荷节点电压质量和PV发电机节点无功出力为罚函数.以有功功率和无功功率为约束条件的数学模型,并应用改进的粒子群算法对无功优化问题进行求斛。该算法在权重系数和不活动粒子两方面进行改进,有效地解决了进化过程中陷入局部最优和搜索精度差的缺点。最后,将改进后的粒子群算法应用于IEEE14节电力系统进行无功优化算例分析,仿真结果验证了该算法解决电力系统无功优化问题的有效性和可行性。  相似文献   

9.
10.
11.
基于改进粒子群算法的电力系统无功优化   总被引:1,自引:0,他引:1  
针对传统粒子群算法易陷入局部最优解、收敛速度慢的缺点,提出一种基于信息分享策略的改进型粒子群算法,并首次将其应用于电力系统无功优化问题.改进的粒子群算法通过调整学习因子而获得合理有效的收敛速度;采用信息分享策略以保证种群的多样性;在位置的更新过程中加入扰动项,从而避免算法陷入局部最优解.用改进型粒子群算法对IEEE-14节点标准测试系统进行无功优化计算,实验结果表明:与其他算法相比,该改进粒子群算法具有较强的全局寻优能力,且收敛速度快,鲁棒性好,能有效地解决电力系统无功优化问题.  相似文献   

12.
建立以降低网损之后带来经济效益最大为目标函数的模型,通过引入灵敏度分析,得到候选补偿节点以减小寻优时的计算量,再用遗传算法作为配电网无功补偿优化算法,确定补偿节点和最适合的补偿容量。在遗传算法计算过程中通过保存最优秀个体的办法,在提高计算速度的同时还能提高计算精度。  相似文献   

13.
无功优化是保证电力系统安全经济运行的有效手段,是提高电力系统电压质量的重要措施之一。本文首先介绍无功优化的一般数学模型,然后重点分析粒子群优化算法的组成结构与工作原理,进而提出一种改进的粒子群优化算法。该算法采用随机自适应策略,能够对当前所产生的局部最优值进行变异,再重回粒子群算法中搜寻全局最优值,从而可以有效改善传统粒子群算法求解电力系统无功优化问题时存在的收敛精度不高、容易陷入局部最优等不足,一定程度上提高了粒子群算法的寻优能力。最后,通过在IEEE 30节点上进行仿真实验比较,结果表明该算法是可行和有效的,达到了提高供电质量、降低线损的目的。  相似文献   

14.
电力系统无功优化问题是一个复杂的多目标、多约束、非线性的混合整数优化问题,针对基本差分进化算法易陷入局部最优解、收敛速度慢的缺点,首次引入反向优化差分进化算法应用于解决电力系统无功优化问题.反向优化差分进化算法利用基于反向的优化对种群进行初始化,可以获得适应度更优的个体,从而加快了收敛速度;根据一定的跳变率,对种群逐代进行动态跳变,增加了种群的多样性,可以避免算法陷入局部最优解.以系统的有功网损最小为目标函数同时兼顾电压的合理分布,对IEEE-14节点系统进行了无功优化仿真计算,并与其他优化算法进行了比较,结果表明该算法具有较强的全局寻优能力,且收敛速率较快,收敛精度高,鲁棒性好,可较好地解决电力系统无功优化问题.  相似文献   

15.
基于细菌菌落算法的电力系统无功优化   总被引:1,自引:0,他引:1  
电力系统无功优化具有非线性,多控制变量,多约束条件,连续变量和离散变量混杂的特点,针对现有算法或容易陷入局部最优解或收敛速度慢的缺点,提出了一种细菌菌落(bacterial colony optimization,BCO)优化算法,将BCO优化算法首次应用于电力系统无功优化问题。BCO算法将问题的解空间视为细菌培养液,在其中放置单个或少量细菌个体,模拟细菌菌落的生长进化过程,该算法本身具有进化机制,并且提出了一种新的结束准则。BCO算法通过繁殖适应度高的个体,死亡适应度低的个体,可以尽快的获得适应度更优的个体,从而可以避免算法陷入局部最优解,同时也加快了收敛速度。用BCO算法对IEEE14节点标准测试系统进行无功优化计算,实验结果表明,细菌菌落(BCO)优化算法较其他算法具有较强的全局寻优能力,且收敛速度快,鲁棒性好,可以作为求解电力系统无功优化问题的一种新途径。  相似文献   

16.
针对传统的遗传算法在解决配电网无功优化问题时易陷入局部最优、收敛速度慢等缺点,本文研究将迭代群体进行科学分组,并在编码方式、算法选择、遗传操作以及终止判据等方面进行改进,提高算法收敛速度和解的质量。最后将本算法用于某13节点电网系统中,验证所提算法的有效性及实用性。  相似文献   

17.
谌昌强  张耀军 《测控技术》2015,34(4):149-152
为改善基本粒子群优化(PSO)算法的电网无功优化性能,提出了一种新的综合改进型PSO算法,该算法将蜜蜂进化机制、遗传选择机制与PSO算法相结合.在寻优前期,为提高粒子的全局寻优能力,采用蜜蜂进化机制与粒子群相结合的蜜蜂进化PSO算法,可有效地增加粒子的多样性;在寻优后期,为增加粒子的收敛速度,采用遗传选择机制与PSO算法相结合的选择PSO算法.利用综合改进型PSO算法和其他典型优化算法,分别对IEEE 14标准电网以及某地实际运行电网进行对比分析,结果显示,综合改进后的PSO算法进行无功优化时,其收敛速度明显加快,收敛能力显著提高,电网无功优化性能有了很大改善,验证了该算法的正确性和有效性.  相似文献   

18.
对电力系统进行无功优化是指在将指定的条件控制在约束范围内的前提下,通过对控制变量优化的途径使电力系统的各方面的性能指标达到最优的目的。文中结合电力系统的实际问题以及存在的缺点提出了PSO算法的改进,让问题得到了解决。  相似文献   

19.
介绍了电力系统无功优化问题及其模型,对人工智能算法在电力系统无功优化问题中的应用现状进行总结,指出了各种算法在解决此类问题时的优、缺点,并对其研究前景进行了展望。  相似文献   

20.
为解决目前电网系统无功优化潮流计算中存在的问题,如计算量大,计算结果中的各节点电压值可能导致无功电源出力接近极限值,并可能与系统电压安全发生冲突,发电机出力越限等。本文采用带罚函数、学习因子和惯性权重的改进粒子群算法,通过模拟编程,求解了在给定约束条件情况下,两个典型系统(5节点典型系统 和39节点典型系统)的无功优化潮流计算问题。通过计算结果分析比较,总结出了在无功优化计算中,如何对电网中的约束条件进行处理,以及如何设置粒子群算法中的相关参数和范围。并讨论了电网的约束条件对无功优化结果的影响,给出了粒子群算法中罚函数、惯性权重及学习因子等参数的设置原则以及对算法收敛性的影响,并对算法的改进进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号