共查询到20条相似文献,搜索用时 93 毫秒
1.
模糊-Modes聚类算法针对分类属性的数据进行聚类,使用爬山法来寻找最优解,因此该算法对初始值较为敏感。为了克服该缺点,提出一种动态的模糊K—Modes初始化算法,该方法能够自动确定聚类数目,以及对应的聚类中心;而且能够应用于数值属性和分类属性相混合的数据集。该初始化算法可以有效地克服模糊K—Modes算法对初值的敏感性。实验的结果表明了该初始化算法的可行性和有效性。 相似文献
2.
提出了一种基于新相异度量的模糊K-Modes算法.该算法假定不同属性对聚类结果有不同程度的影响,定义了新的属性值函数,以基于划分相似度的聚类精确度作为聚类结果的评价准则.通过真实数据的实验结果表明,新的基于相异度量的模糊K-Modes算法比传统的模糊K-Modes算法有更好的聚类效果. 相似文献
3.
4.
5.
6.
7.
8.
9.
10.
传统K-means算法在随机选取初始聚类中心时,容易导致结果不稳定,谱聚类算法直接在相似矩阵上进行分割,对结果的准确性影响较大,而局部和全局正则化聚类算法未考虑数据空间分布对结果的影响。为此,引入离散度矩阵对局部和全局正则化聚类算法进行改进。改进算法考虑数据的分布信息,通过在局部信息目标函数中引入离散度矩阵,结合全局信息的目标函数,将目标函数最小化问题转换为分解稀疏矩阵特征的问题。在UCI机器学习数据集和公共数据挖掘数据集上的实验结果表明,与K-means及标准谱聚类算法相比,该算法的预测精度更高。 相似文献
11.
针对基本粒子群算法的早熟收敛和收敛较慢的问题,提出了一种带变异操作的粒子群聚类算法。算法中对出现早熟收敛的种群采取变异操作,使其能够跳出局部最优解。对Iris植物样本数据的测试结果表明:该算法具有很好的全局收敛性和较快的收敛速度。 相似文献
12.
微学习单元是微学习过程里的基本学习单位,具有高维性.提取微学习单元适合的特征,保留有代表性的特征,有助于降低冗余,是提高微学习聚类精度的重要方法之一.为获得适合的微学习单元特征、降低计算复杂度,并确保聚类准确性,本研究提出一种改进的骨干粒子群无监督特征选择算法用于选择微学习单元的特征.该方法用互信息构造适应度函数,并采... 相似文献
13.
采用向量空间模型(vector space model,VSM)表示网页文本,通过在CHI(Chi-Square)特征选择算法中引入频度、集中度、分散度、位置信息这四个特征因子,并考虑词长和位置特征因子改进TF-IDF权重计算公式,提出了PCHI-PTFIDF(promoted CHI-promoted TF-IDF)算法用于中文文本分类。改进算法能降维得到分类能力更强的特征项集、更精确地反映特征项的权重分布情况。结果显示,与使用传统CHI和传统TF-IDF的文本分类算法相比,PCHI-PTFIDF算法的宏F1值平均提高了10%。 相似文献
14.
基于LDA特征选择的文本聚类 总被引:1,自引:1,他引:0
特征选择在文本聚类中起着至关重要的作用,将产生式模型Latent Dirichlet Allocation(LDA)引入基于K-means算法的文本聚类中,通过提取特征与隐含主题的关系进行特征选择.在第2届中文倾向性分析评测的语料上的实验结果表明,当选择2%的特征时,相对于单词贡献度(TC,Term Contribution)方法的纯度和F值分别提高了0.15和0.16,相对于LDA直接得到文本与主题的关系的实验结果的纯度和F值分别提高了0.14和0.13. 相似文献
15.
传统tf.idf算法中的idf函数只能从宏观上评价特征区分不同文档的能力,无法反映特征在训练集各文档以及各类别中分布比例上的差异对特征权重计算结果的影响,降低文本表示的准确性。针对以上问题,提出一种改进的特征权重计算方法tf.igt.igC。该方法从考察特征分布入手,通过引入信息论中信息增益的概念,实现对上述特征分布具体维度的综合考虑,克服传统公式存在的不足。实验结果表明,与tf.idf.ig和tf.idf.igc 2种特征权重计算方法相比,tf.igt.igC在计算特征权重时更加有效。 相似文献
16.
特征选择通过去除无关和冗余特征提高学习算法性能,本质是组合优化问题。黑寡妇算法是模拟黑寡妇蜘蛛生命周期的元启发式算法,在收敛速度、适应度值优化等方面具有诸多优势。针对黑寡妇算法不能进行特征选择的问题,设计五种优化策略:二进制策略“、或门”策略、种群限制策略、快速生殖策略以及适应度优先策略,提出黑寡妇特征选择算法(black widow optimization feature selection algorithm,BWOFS)和生殖调控黑寡妇特征选择算法(procreation controlled black widow optimization feature selection algorithm,PCBWOFS),从特征空间中搜索有效特征子集。在多个分类、回归公共数据集上验证新方法,实验结果表明,相较其他对比方法(全集、AMB、SFS、SFFS、FSFOA),BWOFS和PCBWOFS能找到预测精度更高的特征子集,可提供有竞争力、有前景的结果,而且与BWOFS相比,PCBWOFS计算量更小,性能更好。 相似文献
17.
18.
一种高效的用于文本聚类的无监督特征选择算法 总被引:14,自引:0,他引:14
特征选择虽然非常成功地应用于文本分类,但却很少用于文本聚类,这是因为那些高效的特征选择方法通常都是有监督的特征选择算法,它们因为需要类信息而无法直接应用于文本聚类.为了能将这些方法应用到文本聚类上,提出了一种新的无监督特征选择算法:基于K-Means的特征选择算法(KFS).这个算法通过在不同K-Means聚类结果上使用有监督特征选择的方法,成功地选择出了最为重要的一小部分特征,使文本聚类的性能提高了近15%. 相似文献
19.
模糊特征选择新算法:Ⅱ* 总被引:3,自引:0,他引:3
用模糊似然函数计算类内及类间距离,得到任意特征子集的模糊特征特征选择系数,用于特征子集的选择,从而得出最能区分和表征模式类的特征子集。举例说明了该方法的具体用法,表明具有好的实用性。 相似文献
20.
针对传统支持向量机方法用于数据分类存在分类精度低的不足问题, 将支持向量机分类方法与特征选择同步结合, 并利用智能优化算法对算法参数进行优化研究. 首先将遗传算法(Genetic algorithm, GA)和乌燕鸥优化算法(Sooty tern optimization algorithm, STOA)进行混合, 先通过对平均适应度值进行评估, 当个体的适应度函数值小于平均值时采用遗传算法对其进行局部搜索的加强, 否则进行乌燕鸥本体优化过程, 同时将支持向量机内核函数和特征选择目标共同作为优化对象, 利用改进后的STOA-GA寻找最适应解, 获得所选的特征分类结果. 其次, 通过16组经典UCI数据集和实际乳腺癌数据集进行数据分类研究, 在最佳适应度值、所选特征个数、特异性、敏感性和算法耗时方面进行对比研究, 实验结果表明, 该算法可以更加准确地处理数据, 避免冗余特征干扰, 在数据挖掘领域具有更广阔的工程应用前景. 相似文献