首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
模糊-Modes聚类算法针对分类属性的数据进行聚类,使用爬山法来寻找最优解,因此该算法对初始值较为敏感。为了克服该缺点,提出一种动态的模糊K—Modes初始化算法,该方法能够自动确定聚类数目,以及对应的聚类中心;而且能够应用于数值属性和分类属性相混合的数据集。该初始化算法可以有效地克服模糊K—Modes算法对初值的敏感性。实验的结果表明了该初始化算法的可行性和有效性。  相似文献   

2.
提出了一种基于新相异度量的模糊K-Modes算法.该算法假定不同属性对聚类结果有不同程度的影响,定义了新的属性值函数,以基于划分相似度的聚类精确度作为聚类结果的评价准则.通过真实数据的实验结果表明,新的基于相异度量的模糊K-Modes算法比传统的模糊K-Modes算法有更好的聚类效果.  相似文献   

3.
基于新的相异度量的模糊K-Modes聚类算法   总被引:3,自引:2,他引:1       下载免费PDF全文
白亮  曹付元  梁吉业 《计算机工程》2009,35(16):192-194
传统的模糊K-Modes聚类算法采用简单匹配方法度量对象与Mode之间的相异程度,没有充分考虑Mode对类的代表程度,容易造成信息的丢失,弱化了类内的相似性。针对上述问题,通过对象对类的隶属度反映Mode对类的代表程度,提出一种新的相异度量,并将它应用于传统的模糊K—Modes聚类算法。与传统的K—Modes和模糊K-Modes聚类算法相比,该相异度量是有效的。  相似文献   

4.
龚安  牛秋丽  高博  刘华山 《微计算机应用》2007,28(11):1138-1141
针对目前粗糙集属性约简速度比较慢、不能得到属性约简集的问题,提出了一种新的属性约简算法。通过理论分析、具体的实例和UCI数据集验证,该算法可以确保得到决策表的一个约简,并能减少计算量,提高计算速度。同时算法中引入了强等价集,很好地解决了属性加权频率值相同的问题。  相似文献   

5.
基于信息熵的精确属性赋权K-means聚类算法   总被引:4,自引:0,他引:4  
为了进一步提高聚类的精确度,针对传统K-means算法的初始聚类中心产生方式和数据相似性判断依据,提出一种基于信息熵的精确属性赋权K-means聚类算法。首先利用熵值法对数据对象的属性赋权来修正对象间的欧氏距离,然后通过比较初聚类的赋权类别目标价值函数,选择高质量的初始聚类中心来进行更高精度和更加稳定的聚类,最后通过Matlab编程实现。实验证明该算法的聚类精确度和稳定性要明显高于传统K-means算法。  相似文献   

6.
在面向名义型属性的聚类问题中,各个属性权重的选择对于聚类效果至关重要。在实践中,常常赋予各个属性相同的权重或者根据领域专家的意见赋予经验权重。在缺乏领域专家意见时,充分考虑各个属性对聚类结果贡献程度的不同,引入监督学习的思想对部分标记数据进行训练,设计遗传算法寻找各个属性更优的权重,以期获得更好的聚类效果。  相似文献   

7.
数据聚类在智能信息处理中具有非常重要的作用。传统的数据聚类方法,如K-means算法,存在对初始聚类中心敏感等问题。随着智能优化算法的发展,人们用智能优化算法进行数据聚类取得了一定的效果,但存在容易陷入局部最优等问题。为此,本文将在高维优化问题中取得良好效果的竞争型群体优化算法中引入数据聚类,利用竞争型群体优化算法强大的全局探索能力搜索聚类中心进行数据聚类,在UCI的5个数据集上的实验结果表明竞争型群体优化算法比遗传算法、粒子群算法不仅能得到更好的聚类效果,而且收敛性能更好。  相似文献   

8.
9.
首先总结了链接挖掘中基于属性—链接聚类算法的研究现状;然后把它大体分为三类,对每一类中具有代表性的算法进行了详细介绍、分析和评价;最后指出了该领域进一步的研究方向。  相似文献   

10.
传统K-means算法在随机选取初始聚类中心时,容易导致结果不稳定,谱聚类算法直接在相似矩阵上进行分割,对结果的准确性影响较大,而局部和全局正则化聚类算法未考虑数据空间分布对结果的影响。为此,引入离散度矩阵对局部和全局正则化聚类算法进行改进。改进算法考虑数据的分布信息,通过在局部信息目标函数中引入离散度矩阵,结合全局信息的目标函数,将目标函数最小化问题转换为分解稀疏矩阵特征的问题。在UCI机器学习数据集和公共数据挖掘数据集上的实验结果表明,与K-means及标准谱聚类算法相比,该算法的预测精度更高。  相似文献   

11.
针对基本粒子群算法的早熟收敛和收敛较慢的问题,提出了一种带变异操作的粒子群聚类算法。算法中对出现早熟收敛的种群采取变异操作,使其能够跳出局部最优解。对Iris植物样本数据的测试结果表明:该算法具有很好的全局收敛性和较快的收敛速度。  相似文献   

12.
微学习单元是微学习过程里的基本学习单位,具有高维性.提取微学习单元适合的特征,保留有代表性的特征,有助于降低冗余,是提高微学习聚类精度的重要方法之一.为获得适合的微学习单元特征、降低计算复杂度,并确保聚类准确性,本研究提出一种改进的骨干粒子群无监督特征选择算法用于选择微学习单元的特征.该方法用互信息构造适应度函数,并采...  相似文献   

13.
采用向量空间模型(vector space model,VSM)表示网页文本,通过在CHI(Chi-Square)特征选择算法中引入频度、集中度、分散度、位置信息这四个特征因子,并考虑词长和位置特征因子改进TF-IDF权重计算公式,提出了PCHI-PTFIDF(promoted CHI-promoted TF-IDF)算法用于中文文本分类。改进算法能降维得到分类能力更强的特征项集、更精确地反映特征项的权重分布情况。结果显示,与使用传统CHI和传统TF-IDF的文本分类算法相比,PCHI-PTFIDF算法的宏F1值平均提高了10%。  相似文献   

14.
基于LDA特征选择的文本聚类   总被引:1,自引:1,他引:0  
特征选择在文本聚类中起着至关重要的作用,将产生式模型Latent Dirichlet Allocation(LDA)引入基于K-means算法的文本聚类中,通过提取特征与隐含主题的关系进行特征选择.在第2届中文倾向性分析评测的语料上的实验结果表明,当选择2%的特征时,相对于单词贡献度(TC,Term Contribution)方法的纯度和F值分别提高了0.15和0.16,相对于LDA直接得到文本与主题的关系的实验结果的纯度和F值分别提高了0.14和0.13.  相似文献   

15.
基于信息增益的文本特征权重改进算法   总被引:2,自引:0,他引:2       下载免费PDF全文
传统tf.idf算法中的idf函数只能从宏观上评价特征区分不同文档的能力,无法反映特征在训练集各文档以及各类别中分布比例上的差异对特征权重计算结果的影响,降低文本表示的准确性。针对以上问题,提出一种改进的特征权重计算方法tf.igt.igC。该方法从考察特征分布入手,通过引入信息论中信息增益的概念,实现对上述特征分布具体维度的综合考虑,克服传统公式存在的不足。实验结果表明,与tf.idf.ig和tf.idf.igc 2种特征权重计算方法相比,tf.igt.igC在计算特征权重时更加有效。  相似文献   

16.
特征选择通过去除无关和冗余特征提高学习算法性能,本质是组合优化问题。黑寡妇算法是模拟黑寡妇蜘蛛生命周期的元启发式算法,在收敛速度、适应度值优化等方面具有诸多优势。针对黑寡妇算法不能进行特征选择的问题,设计五种优化策略:二进制策略“、或门”策略、种群限制策略、快速生殖策略以及适应度优先策略,提出黑寡妇特征选择算法(black widow optimization feature selection algorithm,BWOFS)和生殖调控黑寡妇特征选择算法(procreation controlled black widow optimization feature selection algorithm,PCBWOFS),从特征空间中搜索有效特征子集。在多个分类、回归公共数据集上验证新方法,实验结果表明,相较其他对比方法(全集、AMB、SFS、SFFS、FSFOA),BWOFS和PCBWOFS能找到预测精度更高的特征子集,可提供有竞争力、有前景的结果,而且与BWOFS相比,PCBWOFS计算量更小,性能更好。  相似文献   

17.
特征选择是模式识别系统的分类器设计之前一个重要而困难的一个课题。在目前现有的方法中,基于决策界的特征选择是其中一类方法。文中将覆盖算法应用于特征提取,提出了基于覆盖算法决策界的特征选择算法(Feature SelectionAlgorithm based on the Decision Boundary of Covering Algorithm,简称FSACA法),然后将该算法应用于一个字符识别的实例并与其他算法比较。实验结果证明了FSACA法的可行性和有效性。  相似文献   

18.
一种高效的用于文本聚类的无监督特征选择算法   总被引:14,自引:0,他引:14  
特征选择虽然非常成功地应用于文本分类,但却很少用于文本聚类,这是因为那些高效的特征选择方法通常都是有监督的特征选择算法,它们因为需要类信息而无法直接应用于文本聚类.为了能将这些方法应用到文本聚类上,提出了一种新的无监督特征选择算法:基于K-Means的特征选择算法(KFS).这个算法通过在不同K-Means聚类结果上使用有监督特征选择的方法,成功地选择出了最为重要的一小部分特征,使文本聚类的性能提高了近15%.  相似文献   

19.
模糊特征选择新算法:Ⅱ*   总被引:3,自引:0,他引:3  
用模糊似然函数计算类内及类间距离,得到任意特征子集的模糊特征特征选择系数,用于特征子集的选择,从而得出最能区分和表征模式类的特征子集。举例说明了该方法的具体用法,表明具有好的实用性。  相似文献   

20.
贾鹤鸣  李瑶  孙康健 《自动化学报》2022,48(6):1601-1615
针对传统支持向量机方法用于数据分类存在分类精度低的不足问题, 将支持向量机分类方法与特征选择同步结合, 并利用智能优化算法对算法参数进行优化研究. 首先将遗传算法(Genetic algorithm, GA)和乌燕鸥优化算法(Sooty tern optimization algorithm, STOA)进行混合, 先通过对平均适应度值进行评估, 当个体的适应度函数值小于平均值时采用遗传算法对其进行局部搜索的加强, 否则进行乌燕鸥本体优化过程, 同时将支持向量机内核函数和特征选择目标共同作为优化对象, 利用改进后的STOA-GA寻找最适应解, 获得所选的特征分类结果. 其次, 通过16组经典UCI数据集和实际乳腺癌数据集进行数据分类研究, 在最佳适应度值、所选特征个数、特异性、敏感性和算法耗时方面进行对比研究, 实验结果表明, 该算法可以更加准确地处理数据, 避免冗余特征干扰, 在数据挖掘领域具有更广阔的工程应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号