首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
建立了以机械方式连接的封闭弹性长方体与弹性圆柱体的外辐射声场模型。通过在弹性板和壳的四周以及两弹性结构连接点之间施加假想的弹簧系统模拟不同的边界条件和连接条件,利用汉密尔顿函数和瑞利-李兹方法,推导出了腔体外辐射声场的解析解。该模型充分考虑了弹性结构之间的振动耦合以及弹性结构与腔体内声场之间的耦合。通过算例表明,弹性结构的辐射声场主要由其中的直接受力件的辐射声场所决定;弹性结构连接点处线弹簧的刚度变化对辐射声场的影响较旋转弹簧大。同时,运用有限元法计算两个腔体内的声模态和弹性结构的振动模态,及其耦合系数,结合边界元法计算出腔体外的声压响应,并将此数值仿真结果与前面导出的解析结果进行比较,验证理论推导的正确性。  相似文献   

2.
利用汉密尔顿函数和瑞利-李兹方法,建立了分别由1块四边弹性支承的弹性板及5块刚性板构成 的两连接封闭矩形腔外的辐射声场模型,推导了腔体外辐射声场的解析解。模型在两个弹性长方体结构的连接 处施加假想的弹簧系统模拟不同连接条件,同时考虑了两弹性结构连接点之间以及弹性板与腔体内声场之间的 耦合。通过算例表明,间接力通过连接结构对弹性板辐射声场的影响明显小于弹性板在同样直接力作用下的辐 射声场;弹性结构连接点处线弹簧的刚度变化对辐射声场的影响较旋转弹簧大。  相似文献   

3.
采用一种改进傅里叶级数方法建立了任意弹性边界支承下输流管路系统耦合振动特性分析模型。通过在管路两端引入两种边界支承弹簧,所有经典边界条件及其组合可以通过设置相应刚度系数得到。管路横向振动位移采用标准傅里叶级数与边界光滑函数叠加展开,使得所构造的场函数在整个域内[0,L]足够光滑,联立输流管路耦合振动系统微分方程与弹性边界条件,求得任意边界条件管路系统耦合振动特性分析的标准特征值问题。通过数值算例,验证了此模型预报不同条件下输流管路振动特性的正确性与可靠性。在此基础上,讨论分析了边界支承刚度变化对输流管路耦合振动特性的影响。此模型具有收敛快、精度高等特点,可以为研究复杂边界支承输流管路耦合振动特提供新的分析手段。  相似文献   

4.
采用改进傅立叶级数的方法对任意弹性边界条件下的耦合板进行自由振动分析,将板的振动位移函数表示为标准的二维傅立叶余弦级数和辅助级数的线性组合。通过辅助级数的引入,解决了位移导数在边界不连续的问题。边界条件和耦合条件通过均匀布置的线性位移弹簧和旋转弹簧来模拟,通过改变弹簧刚度值可以实现任意边界条件和耦合条件的模拟。利用Hamilton原理建立求解方程,建立一个线性方程组,最终得到耦合板的控制方程的矩阵表达式,通过特征值分解可以求得固有频率。通过数值仿真分析计算并与有限元结果进行比较,验证了本方法的准确性。  相似文献   

5.
以南昌地铁1号线八一广场段为工程背景,对轨道-隧道-大地的三维有限元模型进行动力学分析。分别建立三种道床模型:整体道床、弹性支承块道床和钢弹簧浮置板道床。以振动加速度、1/3倍频程振动加速度级和Z振级作为评价指标,比较不同轨道结构下隧道壁及地面的振动响应。随之减振道床支承刚度的变化,分析道床的自振频率对减振效果的影响。计算表明:列车引起的地面振动主频在40 Hz附近;减振道床的自振频率对减振效果有较大影响;钢弹簧浮置板道床减振效果明显优于弹性支承块道床。  相似文献   

6.
研究两端用圆板封口的环肋圆柱壳结构在流场中的振动声辐射特性,着重分析了由环肋圆柱壳和端部圆板所围空腔的内部声场对整个系统结构振动和声辐射的影响.基于扩展的Rayleigh-Ritz法,利用Hamilton变分原理推导出圆柱壳与圆板的耦合振动方程.考虑了静水压力的影响,环肋圆柱壳与端部圆板之间采用二自由度弹簧模拟弹性连接的等效刚度.环肋圆柱壳声辐射的研究中,用Helmholtz波动方程和流固交界面上的速度相容条件求得壳体表面辐射声压的表达式,该表达式对有限长圆柱壳进行Fourier积分变换得到壳体外表面辐射声压的解;用Green函数法来求解环肋圆柱壳和端板所围空腔的内部压力场.  相似文献   

7.
随着噪声控制标准的不断提升和装配式建筑的快速发展,提升平板结构的隔声性能并改进其测量技术有着重要意义。基于谱几何法(Spectral Geometry Method,SGM)建立一种可用于虚拟声学测试的隔声测量室动力学模型,分别通过二维和三维傅里叶级数法得到板表面的位移和腔内声场,可确保声压与振速在任意位置的连续性。将声源腔和接收腔分别设置为混响室和消声室,并通过在拉格朗日方程中添加阻抗能量项实现任意阻抗边界。然后基于哈密顿原理充分考虑两声腔与板之间的耦合关系,得到系统的振动方程。通过与有限元模型的对比,验证了该方法的正确性、良好的数值稳定性与极高的计算效率。最后,分析弹性安装条件、接收腔厚度对于腔内声能及构件振动的影响,结果表明两者均可使板结构受到的声压激励产生变化,从而对结构的声传递产生影响。  相似文献   

8.
基于解析法分别建立了梯形声腔内声场与两种边界约束形式(简支和固支)弹性壁板间的耦合模型,推导出反映声腔内声场与两种边界约束形式弹性壁板间耦合程度的通用表达式,研究了它们间的耦合特性,并对耦合系统受外界激励后的响应进行了分析。结果表明:对于简支和固支约束弹性壁板分别与梯形声腔构成的两个耦合系统,声腔声场模态与弹性壁板模态间在平行于倾斜壁面的轴向耦合依然具有选择性,而在随壁面倾斜角改变而尺寸变化的轴向其模态间耦合则不再具有选择性;弹性壁板的不同约束形式对腔控耦合系统模态的共振频率影响较小;腔控耦合系统模态的共振频率是否受壁面倾斜角的影响主要取决于倾斜壁面位置和声腔模态序数两个因素;相较于声腔壁面倾斜角对声腔内声场响应有较大的影响,其对板振动的响应影响较小。  相似文献   

9.
考虑半空间声场内重流体的声振耦合效应,对有限大双层板-腔结构的振动与声辐射特性进行研究。采用改进傅里叶级数描述薄板位移和腔内声压,通过Rayleigh积分建立辐射板表面辐射声压和辐射板位移的关系,基于Hamilton原理,提出采用Rayleigh-Ritz法分析耦合系统声振特性的半解析方法,并通过和有限元结果对比验证方法的收敛性和准确性。分析单位简谐力激励下,声腔厚度和腔内流体介质对双层板-腔结构声辐射特性的影响。结果表明:重流体的耦合效应使薄板(奇,奇)模态振型显著变化,声腔较薄时声辐射对声腔厚度变化较敏感。相较于腔内流体声速,腔内流体密度对声辐射有较大影响。  相似文献   

10.
建立了弹性约束边界下旋转薄壁圆柱壳结构自由振动行波特性分析模型,通过在边界引入四种约束弹簧,任意边界条件可以通过设置刚度系数而统一得到。基于Sanders薄壳理论对旋转薄壁圆柱壳自由振动的振动能量表达式进行了推导,三个方向的振动位移场通过一种改进傅立叶级数进行展开,带入能量表达式并利用RayleighRitz法进行变换推导,得到旋转薄壁圆柱壳自由振动的系统特征方程。利用MATLAB编程计算,得到行波振动固有频率,通过与现有文献中其他方法比较,验证了本文方法的正确性,随后采用不同几何参数、不同边界条件、不同约束弹簧刚度的算例对振动特性的影响进行分析,揭示了转速、长径比、厚径比等几何条件以及边界约束弹簧刚度对旋转薄壁圆柱壳自由振动行波特性的影响规律。  相似文献   

11.
利用有限元结合间接边界元的方法分析弹性板/矩形腔耦合系统的内声场,通过与实验对比,验证了这种结构-声耦合法在预估板-空腔耦合系统声振特性的可行性。运用ISO532B响度计算标准的算法,分析封闭腔内不同位置测点处的特征响度变化规律,讨论参与耦合的弹性板厚度及边界条件对闭腔内声响度的影响。最后,以响度作为声品质的评价指标,通过参数化滤波的方法对闭腔内不同位置的测点的各特征频带进行处理,找出对人耳主观感觉影响较大的频率范围,从而为进行闭腔噪声控制和声品质改善提供参考。  相似文献   

12.
板壳类结构在工程领域被广泛应用,使得板壳耦合结构动力学特性成为备受关注的研究话题。针对现有研究方法在复杂耦合结构动力学特性分析方面的局限性,构建复杂边界条件下板壳耦合结构振动分析模型,采用二维改进傅里叶级数对弹性板和圆柱壳结构各位移函数分别进行描述,复杂边界条件通过不同组合的弹性约束来模拟,并依赖四类耦合弹簧充分考虑结构之间弯矩、横向剪力、面内纵向力以及面内剪切力的机械耦合效应,进而基于哈密顿原理和瑞利-里兹方法得到板壳耦合结构系统的特征方程与振动响应。研究结果表明,该方法预测板壳耦合结构模态参数优于文献结果,预测强迫响应结果与测试结果吻合良好,验证了该分析方法的正确性。建立的板壳耦合结构分析模型可适用于各类复杂边界条件,无需重新进行理论推导和计算程序编写,是一种可靠而高效的分析手段,可为开展复杂耦合结构的振动分析与动力学设计提供通用性的分析模型基础。  相似文献   

13.
采用谱几何法(Spectro-Geometric Method,SGM)构建了复杂边界条件/耦合条件下圆柱壳-环板耦合结构动力学特性预报模型,并分别对各自外在边界和二者之间的耦合边界进行建模。耦合边界通过设置具有线性刚度和旋转刚度的三维弹性耦合器模拟结构之间的各类耦合效应。圆柱壳和环板的振动位移容许函数被统一地描述为一种谱形式的改进三角级数。应用哈密尔顿原理从能量的角度推导耦合结构系统的特征方程。将此方法获得的结果与文献解及有限元结果进行对比,验证了分析模型的有效性。  相似文献   

14.
假设矩形板为正交各向异性,材料的物性沿矩形板的宽度方向按幂律连续分布,基于二维线弹性理论,建立了四边弹性约束功能梯度材料(Functionally Graded Material,FGM)矩形板面内自由振动的控制偏微分方程。控制方程为复杂耦合的变系数偏微分方程,采用微分求积法(Differential Quadrature Method,DQM)数值研究了四边弹性约束FGM矩形板面内自由振动的无量纲频率特性。通过设置弹性刚度系数为0或∞,梯度指数为0,问题退化为各种典型边界下矩形板的面内自由振动,与已有的各向同性矩形板自振频率结果进行比较,结果表明分析求解方法行之有效。最后考虑了FGM矩形板边界条件、长宽比、梯度指数及刚度系数对自振频率的影响。  相似文献   

15.
采用改进傅里叶级数展开建立了轴向载荷条件下弹性边界约束梁结构振动分析模型。通过在梁结构两端引入平动和旋转位移约束弹簧,相应设置约束弹簧刚度系数可以实现对任意边界条件及其组合的模拟。梁结构振动系统位移场采用傅里叶级数附加边界光滑函数进行构建,利用能量原理建立轴向载荷作用下梁结构总动能、总势能和外力做功项,并结合瑞利-里兹步骤获得系统特征矩阵方程。通过数值算例,验证了该模型对不同边界条件、轴向载荷作用下梁结构振动特性分析的正确性与可靠性。在此基础上,研究了边界约束弹簧横向刚度、旋转刚度、轴向载荷等系统参数及激振力对梁结构振动特性的影响。该模型具有高效、高精度等特点,为研究轴向载荷作用下复杂边界条件梁结构振动行为提供了有效分析手段。  相似文献   

16.
采用谱几何法建立了任意边界条件下弹性梁横向、纵向和扭转耦合振动分析模型。将弹性梁的横向、纵向和扭转振动位移函数分别描述为一种辅助函数为三角级数的改进傅里叶级数;在弹性梁两端引入边界约束弹簧组,通过改变其刚度值模拟任意边界条件;应用Hamilton原理从能量角度推导整个结构的拉格朗日函数;采用Ritz法对其进行求解。计算了弹性梁模型不同边界下前6阶固有频率,与文献解对比最大误差为0.02%,验证了该方法的正确性和较快的收敛性。该模型统一了弹性梁横向、纵向和扭转振动的位移函数表示形式和模态特性求解方程,通过改变边界约束弹簧刚度系数可以实现对弹性梁耦合振动特性进行调整,为弹性梁动力学性能优化提供了一种参数化的研究方法。  相似文献   

17.
采用瑞利-里兹法对附加弹性铰支承的圆形薄板结构进行振动分析,研究不同约束边界条件下,支承的刚度、数量、位置对圆板结构振动特性(频率、振型)的影响。运用正交梁多项式作为圆板的径向试函数,用傅里叶级数作为圆板的周向试函数,保证了振动特征参数计算结果的完备性和准确性。通过一些经典算例分析附加支承的数量、刚度和位置等对圆板结构固有频率的影响规律,揭示圆形薄板附加支承对称布局设计的重要性。  相似文献   

18.
基于二维线弹性理论,应用Halmiton原理,建立了四边弹性约束边界矩形板面内自由振动的控制偏微分方程。采用微分求积法(DQM)数值研究了弹性约束边界矩形板面内自由振动的无量纲频率特性。通过设置弹性刚度系数为0或∞,问题退化为各种典型边界矩形板的面内自由振动,与已有的矩形板面内自振频率结果进行比较,结果显示,该分析求解方法行之有效;最后考虑了矩形板边界条件、长宽比、刚度系数对自振频率的影响。  相似文献   

19.
提出一种有效的理论方法研究弹性边界约束矩形板的振动特性,并设计实验测试不同边界矩形板的固有频率。矩形板的弹性边界约束采用一系列的均布线性弹簧模拟,用特征正交多项式来表示矩形板的位移容许函数,并采用瑞利-里茨法获得弹性边界约束矩形板的固有频率和固有振型。通过改变边界弹簧的刚度即可模拟矩形板不同的边界条件,提高计算效率。基于理论方法计算获得结构固有频率并和有限元及实验结果进行对比,验证所提理论方法的正确性。此外,通过实验测试的方法分析弹性-简支、弹性-固支等不同边界组合条件下矩形板的振动特性,分析调整不同边界弹簧刚度对矩形板振动特性的影响。  相似文献   

20.
基于格林函数法的封闭声腔的结构-声耦合分析   总被引:2,自引:0,他引:2  
以封闭声腔为模型,在考虑流固耦合作用的基础上,结合流体格林函数和Helmholtz方程及其边界条件,导出了各阶声压模态对应的声压振幅响应公式;结合结构格林函数和板的振动方程及其边界条件,导出了各阶板模态对应的速度振幅响应公式。这两个公式物理意义明确,易于转化为矩阵形式直接进行数值仿真,可应用于任意几何形状的封闭声腔,为进一步研究封闭声腔的结构-声耦合问题提供了必要的理论基础。数值仿真部分首先对声压振幅和速度振幅的积分形式作了矩阵化。然后以长方体封闭声腔为模型,结合有限元法计算声压模态和弹性板的振动模态,合成耦合系数,并最终合成弹性板与声腔耦合作用下的的声压响应和弹性板的速度响应;将数值仿真结果与解析结果以及前人的试验结果进行比较,验证了本文在理论分析和数值仿真方面的正确性。最后将该方法应用于一个非规则封闭声腔模型,得到了结构-声耦合作用下的系统响应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号