首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 90 毫秒
1.
周期桁架浮筏系统的隔振特性研究   总被引:1,自引:1,他引:0       下载免费PDF全文
况成玉  张志谊  华宏星 《振动与冲击》2012,31(2):115-118,135
研究了周期结构对桁架浮筏隔振系统振动传递的衰减特性,首先利用有限元方法计算周期桁架浮筏的频响特性,并将其与传统浮筏进行比较。然后,为在隔振系统中评价周期结构浮筏的性能,运用频响函数综合法建立整个系统的振动传递模型,计算频响函数。仿真分析表明:周期桁架浮筏较传统浮筏更有效地抑制振动的传递,当与设备组成一个隔振系统之后,在与浮筏上下层隔振器的共同作用下,整个隔振系统能在一个宽频段内对振动传递产生更好的抑制作用  相似文献   

2.
利用曲梁具有径向刚度和切向刚度耦合以及波形转换的特性,设计了具有低频宽频带隙的曲梁周期结构隔振器。该隔振器由多层面板-支撑曲梁结构构成。针对曲梁对边支撑的结构,推导了分析含有内部自由度的周期结构的能带结构以及利用子结构迭代法进行响应求解的一般公式,并进行了验证,该子结构迭代法特别适合于周期数较多的复杂周期结构的响应求解。对带隙起始频率和终止频率所对应的结构模态进行了分析。讨论了曲梁和面板结构参数变化对周期结构隔振器带隙结构的影响。并且对一对边支撑的曲梁周期结构隔振器进行试验研究,测得其原点导纳和传递导纳,验证了这种周期结构低频宽频带隙的存在和建模方法的正确性。  相似文献   

3.
为了揭示周期结构中纵向波和弯曲波的耦合作用,设计了对称和非对称周期结构。考虑子结构中的纵向和弯曲耦合运动,利用导纳法和传递矩阵法,得到了周期单元的传递方程。由于结构中存在多种波的耦合作用,在求解周期单元的传播系数时将出现变态矩阵,采用波型分组法,求得了周期结构中多种波型的传播系数。推导了半无限长和有限长周期结构在纵向力、横向力和弯矩作用下的动态响应。数值计算结果表明,对称周期结构中纵向波和弯曲波的带隙结构相互独立;非对称周期结构中纵向波和弯曲波的耦合明显改变了两种波的带隙结构,只有在两种波阻带重叠的频段内结构上的振动响应才存在衰减。  相似文献   

4.
轴向载荷周期结构梁的弯曲振动带隙特性   总被引:2,自引:1,他引:1       下载免费PDF全文
各种载荷广泛存在于结构振动中,影响结构的振动特性。利用传递矩阵法,建立了轴向载荷周期结构梁弯曲振动特性理论模型,能够计算轴向载荷周期结构梁弯曲振动的能带结构和传输特性。研究表明,轴向载荷周期结构梁弯曲振动存在带隙,并分析了轴向载荷对带隙频率范围和衰减的影响。通过调节载荷条件,可以实现了超低频带隙特性。通过调节轴向载荷的大小和方向可以提高带隙的适应性。  相似文献   

5.
从数学物理方程角度出发,研究层状周期结构的动力衰减域特性。分析衰减域三个控制因素及影响因素。对有限层状周期结构,进行动力谐响应及瞬态响应分析;振动台隔震性能试验表明,层状周期结构对外部激励具有隔离或减弱作用。该研究为层状周期结构用于工程结构隔震、减振奠定了基础。  相似文献   

6.
基于超声导波声弹性效应检测波导结构的应力水平具有潜在的优势。为实现超声导波声弹应力检测的关键技术——检测模态与激励频率的选取,提出一种基于Murnaghan超弹模型的有限元特征频率法。使用该方法计算预应力杆中的频散特性,得到反映不同激励频率应力敏感性的声弹频散曲线,与文献中的L(0,1)模态试验结果进行对比,趋势一致,说明该方法的适用性。为进一步验证该方法的可靠性,选取L(0,1)模态声弹敏感的几组频率,在自制拉伸试验平台上,对碳素钢杆进行超声导波声弹试验。试验结果表明:低应力区域误差较大,在高应力区域误差均低于10%,且声弹常数与理论结果趋势一致。研究表明该理论方法可指导超声导波声弹应力检测时频率与模态的选取。  相似文献   

7.
周期结构空腹梁的动态特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
陈荣  吴天行 《振动与冲击》2013,32(14):122-126
设计了一种内部周期性挖空的梁,它在中高频具有良好的带通和带阻特性,带阻频率范围内的弹性波不能传播。空腹梁由周期单元串联而成,把周期单元分解成薄梁和刚性联接杆等子结构,推导了Timoshenko梁纵向、弯曲振动导纳,给出了刚性联接杆振动导纳,利用传递矩阵法计算得到了周期结构空腹梁的力传递率和带隙位置。数值模拟计算表明,当激励频率在周期结构的阻带之内时,周期结构空腹梁上的位移响应和传递到基础的力响应将大大衰减。  相似文献   

8.
行星齿轮箱是风力机传动装置的重要组成部分,行星轮在低速重载、既自转又公转的复杂环境下容易诱发故障,其故障诊断特别是故障行星轮定位一直是研究重点和难点。建立了行星轮齿轮箱实验装置,模拟了行星轮故障,并利用声发射信号进行故障行星轮定位。实验研究了声发射信号在齿轮内部、齿轮与齿轮之间的传播特性,利用信号的幅值衰减特性简化了故障定位模型。利用信号幅度随信号传播距离增加而呈指数衰减的关系,建立了故障源定位方程组,从而获得故障齿的啮合位置,进一步确定故障行星轮的位置。实验结果表明:利用声发射信号的幅值衰减特性能够较为精确的确定故障行星轮的位置。  相似文献   

9.
研究了一类三自由度碰撞振动系统的激变和阵发性。六维庞加莱(Poincaré)映射能够表示成另外一个不对称映射的二次迭代,这表明系统具有对称性。该系统普遍存在发生Hopf分岔后得到的一对共轭拟周期运动。根据动力系统的极限集理论,讨论了极限集的对称性,得到系统发生激变的条件,并引入一个距离函数判定对称性恢复和激变临界点。当共轭混沌吸引子和不稳定对称不动点的最小距离等于0时,一对共轭混沌吸引子将会与不稳定的对称不动点在其吸引域边界发生碰撞,从而导致激变。通过数值模拟,揭示了激变之后的一种新的阵发性动力学现象:拟周期-拟周期阵发性。其分岔机制是:两个共轭拟周期吸引子→两个共轭拟周期吸引子倍化→两个共轭带状混沌吸引子→一个对称混沌吸引子→一个对称拟周期引子,通过对称极限集理论来区分对称吸引子和共轭吸引子,同时采用QR法计算Lyapunov指数并用来确定吸引子的类型。激变导致的拟周期-拟周期阵发性,对于多自由度碰撞振动系统的动力学研究及优化设计具有重要意义。  相似文献   

10.
管路的振动小仅造成噪声污染,而且造成机器设备的损坏.将声子晶体布拉格带隙原理引入到管壁的结构设计中,将管壁设计成沿轴向交替排列的周期复合结构,采用传递矩阵法,计算此周期弯管中轴向波及弯曲波的传输特性,同时用MSC有限元软件验证了传递矩阵法计算的正确性.研究表明平面周期管路存在弯曲振动、轴向振动带隙特性,在带隙频率范围内,对相应的振动波传播具有很强的衰减作用.进一步,研究材料阻尼比对管路振动特性的影响.  相似文献   

11.
在随钻测井中地面噪声与周期性信道结构形成的下行回波导致传输性能降低,为此,结合钻柱信道的噪声分析,利用上、下行信道的瞬态脉冲响应,构建回波噪声抑制模型,提出了双声接收器的检测方式。在钻柱激励端分别施加单位正弦脉冲信号和PSK调制数据,在接收端耦合下行的高斯噪声,应用钻柱内一维低频纵波传输的有限差分算法,在单接收器和双接收器模式下时域和频域仿真分析了钻柱内声信号的传输特性,验证了双声接收器检测方式的有效性。该方法可实现井下回波噪声的抑制,从而改善信噪比,提高传输速率,为钻柱声遥测系统优化设计提供方法基础。  相似文献   

12.
随钻实测信息声波传输技术是井下信息无线传输技术领域的一个重要研究方向。作为信息传输通道的钻柱是由尺寸存在差异的钻杆相连接构成,钻杆的尺寸差异对钻柱中声的传播是否存在影响是声载波选取及检测必须要了解的问题之一。建立了用于测试钻柱中声波传播特性的试验装置,对不同类型钻杆组成的钻柱中声波的传播特性进行了测试;利用基于声透层理论建立的钻柱中声传播特性研究模型对测试结果进行了理论分析。研究结果表明:组成钻柱的钻杆存在尺寸差异时,钻柱中声波传播特性有所改变,表现在通带的个数减少,有些通带消失,且通带的宽度变窄;尺寸存在差异的钻杆组成的钻柱中声衰减比周期性钻杆要大;低频通带声波受钻杆尺寸差异影响相对较小;存在着个别的排列方式,可以减小钻杆尺寸差异的影响。基于声透层理论的钻柱中声传播特性研究模型在计算前4个通带时较为准确。  相似文献   

13.
钻柱纵向振动分析与应用   总被引:1,自引:1,他引:1  
利用钻柱纵向振动数学模型,分析了钻柱轴向应力振幅分布曲线和钻柱中最大轴向应力幅频曲线的特征以及钻井液粘度、激励位移、减振器位置对钻杆中最大轴向应力振幅的影响。分析表明:钻柱中轴向应力振幅沿纵向呈波状分布,其最大值在钻柱底部或钻杆中;钻杆中的最大轴向应力振幅随转速的变化曲线呈凹坑形,为了保护钻柱,应该选择凹坑中间的转速带;钻杆中的最大轴向应力振幅和钻柱底部的轴向应力振幅随转速的变化趋势并不完全一致,以后者作为判断钻柱是否共振和优选转速的指标不够准确,而应以前者作为该指标;钻杆中的最大轴向应力振幅与激励位移大致成正比;钻井液粘度越高,钻杆中的最大轴向应力振幅越小;减振器位置可以改变钻柱纵振系统的固有频率,从保护钻柱角度考虑,低转速时,减振器应紧靠钻头安装,高转速时,减振器应与钻头保持一定距离;通过优选钻具组合和转速,防止钻柱共振是预防钻具失效的有效措施  相似文献   

14.
张燕华  徐方迁 《声学技术》2011,30(3):216-218
日本学者Hashimoto提出栅格有效介电常数和离散Green函数,并结合有限元方法分析了短路金属栅阵中声表面波的传输特性。由此开发了相应的Fortran应用程序。国际上许多从事声表面波器件的研发公司都使用该程序设计他们的产品。以Rayleigh波在128°YX-LiNbO3基片、铝金属栅中传播为例,给出根据Hashimoto程序运算的结果,读取禁带下边缘和禁带上边缘所对应的相对频率的数值,代入COM理论色散关系的数学表达式中,该表达式的图形就是由COM理论色散关系而确定的波数色散曲线,以提取耦合模参数。  相似文献   

15.
穿孔管消声器横截面模态及消声特性的有限元分析   总被引:2,自引:1,他引:1  
方智  季振林 《振动与冲击》2012,31(17):190-194
将有限元法应用于计算穿孔管消声器的横截面模态频率,推导了相应的有限元公式并编写了计算程序。对于圆形同轴结构的模态频率,有限元法计算结果与解析法计算结果吻合良好,表明了有限元法预测穿孔管消声器横截面模态的准确性。之后将有限元法应用于计算和分析孔径、穿孔率和穿孔管偏移对直通穿孔管消声器横截面模态和消声特性的影响。结果表明,穿孔率低于40%时,孔径减小或穿孔率增大均能使(0,1)阶模态频率升高,消声器中频消声效果变好;穿孔率高于40%后,孔径和穿孔率对(0,1)阶模态频率影响较小。对于非同轴结构,平面波截止频率为第2阶模态频率,对于给定的孔径和穿孔率,穿孔管偏移对第2阶模态频率影响较小。  相似文献   

16.
通过分析带有声学放大器的行波热声发电系统中直线发电机的电-力-声类比图,发现直线发电机的最佳工作状态与行波热声发动机的输出声阻抗特性相关。采用DeltaEC软件计算带有声学放大器的行波热声发动机(以下简称系统)的输出声阻抗特性。计算结果发现,输出声阻抗虚部Xa为-1×107 Pa·s·m-3时,系统的最大输出声功率545.47 W,最大热声转换效率为7.2%;当输出声阻抗虚部Xa在-3.9×106~-1×107 Pa·s·m-3之间变化,实部Ra在1.37×106~2.31×107 Pa·s·m-3之间时,等效位移在1.89~6 mm之间变化,符合直线发电机的位移要求;结合输出声阻抗对压力与体积流率的相位差及系统工作频率的影响,发现声阻抗实部Ra应在1.37×106~2.31×107 Pa·s·m-3之间,声阻抗虚部Xa在-7.5×106~-1.0×107 Pa·s·m-3之间时,系统具有较好的工作状态。  相似文献   

17.
针对电磁超声兰姆波换能器激发的兰姆波存在多模式、频散现象和信号较弱的问题,结合铝合金板材检测背景,提出一种基于"双交点法"、"零斜率准则"和正交试验设计相结合的电磁超声兰姆波换能器多目标优化设计方法。其中,"双交点法"可有效削弱兰姆波多模式现象的影响,"零斜率准则"能够有效降低兰姆波的频散现象,而正交试验设计方法可有效提高电磁超声兰姆波信号的幅值。依据所提优化设计方法,对一个在铝板检测中常用的电磁超声兰姆波换能器的9个主要参数进行了多目标优化设计。实验表明,优化后,兰姆波信号中的多模式、频散现象得到显著抑制,而且信号幅值得到明显提升,有效改善了电磁超声兰姆波换能器的工程实用性。  相似文献   

18.
采用FW-H声模拟法,研究了中心棒的位置、长度和直径等因素对中心棒哈特曼发声器声学特性的影响,得出如下结论:无论中心棒置于谐振腔入口前端还是底部,只要中心棒一端处于气流入口到谐振腔入口段,哈特曼发声器就能产生较高的声压级;中心棒置于气流入口,且长度不超过喷流间距,会产生比普通哈特曼发声器更高的声压级;中心棒的半径有一个最佳值,数值模拟结果显示,不同半径中心棒哈特曼发声器声压级的大小顺序相应为:r=0.2mm、r=0.3mm、r=0.1mm、r=0.5mm,即半径r为0.2mm的中心棒哈特曼发声器产生的声压级较大,而半径r为0.5mm的声压级最较小;频谱分析发现,加中心棒会使哈特曼发声器的最大峰值频率变小。上述结论对中心棒哈特曼发声器的应用具有重要的指导意义。  相似文献   

19.
对水声构件的声性能进行有限元仿真研究,是因为水声构件的声性能不仅由材料本身的物理参数所决定,而且与其内部空腔形状与分布有关。通过反射波与入射波形成的驻波场声压可以直接计算出水声构件的吸声系数。对多种样品进行仿真与测量,两者结果较为一致。该法不受模型结构复杂性的限制,具有费时少、精度高的特点,为消声瓦等水声构件的声性能预报提供了保证。是预报水声构件声性能的一种便捷工具。  相似文献   

20.
在深水测试作业中,隔水管和测试管柱形成双层管柱结构,其在海流作用下发生耦合振动,存在安全隐患.为了研究海流流速对隔水管-测试管柱系统振动的影响,搭建了隔水管-测试管柱系统涡激振动的相似实验装置,开展在不同流速下隔水管-测试管柱系统涡激振动实验.实验中用应变片采集数据,用模态分析法处理实验数据,分析隔水管和测试管柱在横向...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号