首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
随着"减重、节能、降低碳排放"的绿色制造理念越来越深入人心,对传统钢铁材料升级换代的需求显得尤为迫切,第三代汽车用钢已成为各国研发机构和企业关注的焦点。高强度、高韧性、轻量化的先进钢铁材料成为第三代汽车用钢的一个新的研发方向。主要通过在Fe中添加较多的轻质元素如Al、Mn、Si等进行合金成分设计来显著降低钢材密度;同时通过调控基体组织和析出相构成、形态来平衡钢材的强度和塑韧性,从而使钢具有高的强塑积和低的密度。本文针对Fe-Al、Fe-Mn-Al、Fe-Mn-Al-C系低密度钢的成分及组织特征,介绍了低密度钢中Kappa碳化物,(Fe,Mn) Al、Ni Al型B2相,(Fe,Mn)_3Al型DO_3相和β-Mn相的晶格参数及相关性能特征。结合国内外对低密度钢的最新研究,着重对低密度钢相图的热/动力学计算、各有序析出相的元素配分和析出行为(特征、形态、大小)、析出相对钢组织演变与强韧性机制的影响等进行了总结,并基于现有的研究,展望了高强度、高韧性、低密度钢进一步的研究方向。  相似文献   

2.
目前,关于宏观应力对材料断裂性能的影响已有较深入的研究和了解。然而对于微观应力与钢的强韧性能之间相互关系的研究尚鲜报导。本文在37SiMnCrNiMoV超高强度钢强韧化研究的基础上,通过X射线衍射及电子显微分析方法,进一步研究了该钢的强度和工程断裂韧性与第二类微观应力及嵌镶块尺寸之间的相互关系。研究结果表明:第二类微观应力对材料的断裂韧性将产生重要影响。  相似文献   

3.
690 MPa级以上高强钢的发展和工程应用受限于缺乏与其强韧性相匹配的焊接材料,其根本原因是以针状铁素体为主的690 MPa级以下高强钢熔敷金属的强韧化理论已经不能指导新一代高强钢焊接熔敷金属的设计。因此,解决该问题的关键是寻求最佳的熔敷金属微观组织结构。综述了690 MPa级以上高强钢焊接熔敷金属中出现的联合贝氏体和其它各类微观组织对其强韧性的影响。其中,由不同形貌贝氏体相和针状铁素体相组成的复相分割结构可使焊接熔敷金属实现良好的强韧性匹配;然而,联合贝氏体作为下贝氏体的一种,其大尺寸的特点会显著降低高强钢焊接熔敷金属的强韧性;此外,可以通过物理冶金改善高强钢焊接熔敷金属的性能。  相似文献   

4.
高熵合金是由多种元素以等原子比或近等原子比合金化所形成的一类新型金属材料。不同于传统的以一元或二元为主的合金设计思想,高熵合金颠覆性的合金设计理念使得其具有独特的原子结构特征,因而呈现出许多优异的力学、物理及化学性能。但其力学性能还有需继续提高之处,FCC结构的高熵合金通常塑性较好但强度偏低,而BCC结构的高熵合金强度较高但塑性较小。第二相强韧化已经被应用在高熵合金中以改善其强韧性,目前已经开发了大量高性能第二相强韧化高熵合金。然而,由于高熵合金独特的结构和性能特点,其强韧化行为特点和机制与传统合金并不完全相同。从高熵合金第二相强韧化的研究现状出发,简要介绍了高熵合金中的第二相种类及其强韧化机理,并对高熵合金第二相强韧化的研究进行了简单的展望。  相似文献   

5.
无碳化物贝氏体/马氏体复相高强钢具有比同等强度马氏体钢更优异的韧性和塑性,被广泛应用到轨道交通、机械、建筑等领域。文章概述了低成本Mn-Si-Cr系无碳化物贝氏体/马氏体复相钢近年来在合金化设计、工艺设计、微观组织、强韧化机理、强塑化机理、延迟断裂及疲劳性能等方面取得的研究成果。特别介绍了近年来笔者在BQP工艺处理CFB/M复相钢方面的工作进展,经过BQP处理之后,CFB/M复相钢显示了更优异的强度、塑性、韧性和疲劳性能的匹配。最后简单介绍了Mn-Si-Cr系无碳化物贝氏体/马氏体复相钢在不同领域的应用情况,特别是其在重载高速铁路领域的应用现状和前景。  相似文献   

6.
新型纳米强化超高强度钢的研究与进展   总被引:1,自引:0,他引:1  
随着资源、能源和环境压力日益加大,超高强度钢的开发越来越受到世界各国的极大重视。传统的超高强度钢大都是依赖提高碳含量或合金元素含量而获得较高强度的马氏体或贝氏体钢,此种钢存在着焊接性能差、塑韧性低、钢材尺寸受限制和成本昂贵等问题,严重制约了经济的快速发展和现代国防的建设,因此,开发综合性能良好、成本低廉的新型超高强度钢刻不容缓。结合当前纳米科技的发展,介绍了新型纳米强化超高强度钢的设计理念,阐述了以纳米相析出强化为主、多种强化方式结合的强韧化理论,并总结了纳米析出强化超高强度钢在合金设计和工艺优化等方面的初步研究进展,最后探讨了新型纳米强化超高强度钢亟待解决的问题。  相似文献   

7.
90%以上的钢材用作结构材料,强度和韧性是对该类材料最主要的需求,提高钢材强韧性一直是该领域发展的主要方向。如果建筑钢材的强度能翻番.建筑钢材的用量就可大幅度减少,如果汽车用钢的强度能增加80%.汽车的质量就能减少25%.100km油耗就能降到3L。  相似文献   

8.
喷射沉积颗粒增强铝基复合材料有着广阔的应用前景,但是因成形困难、强韧性低而使得应用受到限制,制备时控制热变形过程中的动态再结晶行为和揭示强韧化机制是关键。本文综述了喷射沉积铝基复合材料的冶金结合情况,分析了导致强韧性降低的因素,认为通过旋球同步微变形能抑制沉积颗粒表面的氧化,使增强颗粒与基体结合紧密,并通过冶金结合调控增强颗粒的分布,优化材料的组织,实现梯度材料的制备;同时通过选择不同的增强颗粒得到不同的增强效果,针对性地提高强度、耐磨性等性能;通过显微组织调控(如层状结构、网状结构等)实现构型强韧化。本文还展望了喷射沉积铝基复合材料的发展趋势,认为系统研究增强颗粒、组织构型和颗粒增强复合材料强韧性机制是进一步提升颗粒增强铝基复合材料综合性能的关键问题。  相似文献   

9.
宋扬  刘丽华  张中武 《材料导报》2021,35(15):15175-15182
工业水平的发展对低合金低碳钢的性能提出了更高的要求.较高的强度、良好的韧性和抗疲劳能力以及优异的耐蚀性等是低合金高强钢开发的主要方向.微合金化处理通过在钢中加入微量的合金元素可以明显地改善材料的性能.钛微合金化成本较低,能够明显细化奥氏体晶粒,提高材料的强度,具有广泛的应用价值.微合金化元素钛与钢中的碳元素、氮元素反应生成的TiN、TiC以及Ti(C,N)第二相粒子所产生的沉淀强化、细晶强化等作用能够明显改善材料的性能.TiN粒子析出温度较高,细小的TiN粒子可以抑制高温下晶粒的长大;而粗大的TiN粒子对材料的性能不利.TiC粒子可以在铁素体基体中随机沉淀析出,并与基体保持一定的位相关系,还可以钉扎位错、细化晶粒.Ti(C,N)粒子由TiC与TiN互溶形成,可以钉扎位错,产生析出强化.第二相粒子的尺寸受热处理工艺等影响,因此,需要严格调控材料的热处理工艺,避免粗大第二相粒子的形成.钛的微合金化作用还受到钢中其他合金元素的影响,钛与钼、锰、硼等元素可以产生协同作用,相互促进,有利于材料的强韧性匹配.将钛元素与铌元素、钒元素中的一种或两种同时引入合金钢中进行复合微合金化处理,钛铌复合可以在提高材料强度的同时避免塑性的大量损失,钛钒复合可以降低强度提高时对材料韧性的损害并有效提高材料的淬透性,铌钒钛复合可以结合三种元素的优点更好地改善材料的性能.但是,复合微合金化对合金元素含量具有较高的要求,含量控制不当会严重影响材料的性能.文中主要介绍了近年来国内外关于低碳钢的钛微合金化的研究现状,并针对微合金化的强韧化机理研究进展进行了分析和评述,以期为制备性能优良、适合实际生产的微合金化钢提供参考.  相似文献   

10.
TiC颗粒增韧SiC基复合材料及其冷处理研究   总被引:7,自引:0,他引:7       下载免费PDF全文
研究了TiCP粒径与TiCP/SiC复合材料的抗弯强度和断裂韧性之间的关系,探讨了低温冷处理对复合材料性能的影响.结果表明:添加适宜粒径的TiC颗粒能够提高SiC材料的强度和韧性,但同时提高强度和韧性的粒径范围很窄.对复合材料进行低温冷处理,不仅可以进一步提高强度和韧性,而且可以改变增韧的粒径范围,使增韧和增强的粒径重合范围变宽.因此,形成一个较宽范围的强韧化区,为材料的强韧化设计和工艺的制定提供了依据.   相似文献   

11.
传统方法制备的稀土氧化物弥散强化钼合金(ODS钼合金)强度有限且塑性较差,导致其变形深加工能力不足,严重制约了其工业应用。分析了ODS钼合金制备工艺-微观组织-力学性能之间的因果关系,提出了钼合金纳米掺杂强韧化的新思路,即纳米尺度稀土氧化物颗粒均匀弥散分布在细晶钼基体晶粒内部、同时部分颗粒分布在晶界上的多层级微观结构优化原则,发展了制备该类新型钼合金的液液掺杂方法,所得到的高性能钼合金在拉伸屈服强度达到800 MPa量时,拉伸延伸率仍近40%,与传统方法制备的ODS钼合金相比,屈服强度提高了约15%,拉伸延伸率提高了逾160%,实现了强度和延性的同步提升。进一步建立了强韧化理论模型,对强度和延性的改善进行了量化描述。这种高性能钼合金由于力学性能优异、加工性能好,已获得了工业应用,其微观组织调控原则以及制备方法对其它难熔金属结构材料的高性能化同样具有借鉴意义。  相似文献   

12.
δ-相变诱发塑性(TRIP)钢具有高的强韧性,可达到第三代汽车钢性能要求,且可电阻点焊,是一种新型的具有较高产业化前景的先进汽车钢。主要阐述了δ-TRIP钢的发展、组织与性能、相变与组织演化机理、强韧性机理、电阻点焊工艺与物理冶金机理。  相似文献   

13.
提高调质高强度钢韧性及其机理的研究   总被引:2,自引:0,他引:2  
本文以28Cr_2MoV 钢为对象,研究了通过改善显微组织形态提高调质高强度钢强韧性的效果和强韧化机理。实验表明:合理设计新的热处理工艺,可使这种钢从低温到高温整个回火温区的韧性(a_K、K_(1c))普遍提高。分析指出,改善调质态韧性是由于未溶尽的碳化物颗粒在快速奥氏体化淬火中对改善组织形态所起特殊作用的结果。这种颗粒在加热时提供形核位置以细化奥氏体晶粒,在冷却时切变型转变过程中充当位错增殖源,使淬火组织具有高密度位错,这又为回火提供大量形核位置,使碳化物呈细小、均匀分布并大量析出。相应地韧化基体,提高分散强化效果,改善调质钢的韧性。  相似文献   

14.
钼合金具有室温脆性以及强度低、延性差等本征特性,导致其深加工困难、产品性能低、应用领域受限。如何同步提高钼合金的强度与延、韧性,一直是本领域的挑战性难题。西安交通大学金属材料强度国家重点实验室孙军教授课题组经过多年努力,揭示了稀土氧化物掺杂钼合金中晶粒及晶内与晶界粒子强韧化尺寸效应特性和机理,建立了强韧化定量解析模型,证实了细化稀土氧化物及钼晶粒均可有效提高钼合金的强度和延、韧性,提出了纳米掺杂强韧化的新思路。并据此开发了分子级掺杂的液相混合制备含纳米稀土氧化物钼合金的关键技术,解决了稀土氧化物的纳米化与非团聚化、及其在钼晶粒内部和晶界均匀弥散分布、纳米超细晶结构的高温稳定性等制约该领域发展的3大“瓶颈”难题。所制备的合金中氧化物平均颗粒尺寸小于80 nm,钼晶粒尺寸可达亚微米级(图1)。这种具有纳米稀土氧化物粒子与超细晶微观结构的钼合金在获得显著强化的同时,其拉伸延性可成倍提高。该新型钼合金的强度与延、韧性均超过已报道的国际一流公司同类材料最好水平(图2),同时明显降低了其塑脆转变温度,并显著提高了合金高温再结晶温度及高温强度与拉伸延性。  相似文献   

15.
对高韧性X90管线钢进行实验室模拟轧制,研究了TMCP的工艺参数加热温度、中间坯厚度和卷取温度对其综合力学性能和微观组织特征的影响。结果表明:随着加热温度的提高强度先呈现上升趋势,当加热温度达到1250℃左右时晶粒粗化严重,强度显著下降;中间坯厚度的增加有利于组织细化与均匀化,从而提高钢板强度与韧性;卷取温度对性能的影响最为显著,在320℃左右卷取时可得到粒状贝氏体+板条贝氏体组织,强韧性匹配达到最佳效果。结合实验室模拟参数进行了X90的工业试制,钢卷在得到足够强度的同时具有优异的低温韧性。本文研究的TMCP工艺具有良好的实践效果。  相似文献   

16.
深入研究了P、RE、晶粒细化和组织类型等因素对钢铁材料耐大气腐蚀性能的影响规律和作用原理。研究发现,P改善耐大气腐蚀性能显著,也可有效提高钢的强度,由较高的P含量所导致的钢铁材料的冷脆问题可通过晶粒细化或超细化控制而显著改善;RE可显著改善钢铁材料的耐大气腐蚀性能,其主要作用机理是:在钢中形成的RE化合物、RE/Fe金属间化合物和固溶稀土等在腐蚀薄液膜中水解,并在pH值较高的阴极沉淀,从而起到缓蚀作用;晶粒细化有益于提高钢铁材料的耐大气腐蚀性能。通过集成上述3项技术,开发了新型的P-RE复合合金化超细组织经济型耐候钢。所开发的新材料成本优势明显,强韧性高,耐大气腐蚀性能可接近Cor-ten B钢水平。  相似文献   

17.
本文以28Cr_2MoV 钢为对象,研究了通过改善显微组织形态提高调质高强度钢强韧性的效果和强韧化机理。实验表明:合理设计新的热处理工艺,可使这种钢从低温到高温整个回火温区的韧性(a_K、K_(1c))普遍提高。分析指出,改善调质态韧性是由于未溶尽的碳化物颗粒在快速奥氏体化淬火中对改善组织形态所起特殊作用的结果。这种颗粒在加热时提供形核位置以细化奥氏体晶粒,在冷却时切变型转变过程中充当位错增殖源,使淬火组织具有高密度位错,这又为回火提供大量形核位置,使碳化物呈细小、均匀分布并大量析出。相应地韧化基体,提高分散强化效果,改善调质钢的韧性。  相似文献   

18.
低合金化的Mg-Sn-Bi基合金具有较高的拉伸延展性和挤压成形性,是开发高强韧镁合金的理想材料。为了弥补其强度不足的缺点,本文通过微合金化设计了一种新型的低合金化Mg-2Sn-2Bi-0.5Ca-0.2Mn镁合金,该合金在挤压温度为523 K、挤压比为25∶1的条件下被成功挤压成形。采用电子背散射衍射仪(EBSD)、X射线衍射分析仪(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等技术表征挤压态合金的组织特征和相组成,并利用拉伸试验机测试了挤压态合金的室温拉伸性能,此外,还对合金的强韧化机制和加工硬化行为进行了详细的讨论。结果表明:挤压态合金主要由α-Mg、Mg3Bi2以及Mg2Bi2Ca相组成,且表现出几乎完全的动态再结晶组织和典型的挤压镁合金织构;合金的拉伸屈服强度为287.2 MPa,抗拉强度为353.0 MPa,伸长率为20.0%,具有良好的强韧性匹配度。合金展现出的高屈服强度是晶界强化、第二相强化和织构强化共同作用的结果;合金的断口形貌表现出典型的韧性断裂特征,然而粗大Mg<...  相似文献   

19.
喷射沉积颗粒增强铝基复合材料应用前景广阔,但因成形困难、强韧性低而受限,控制热变形过程中的动态再结晶行为和揭示强韧化机制是关键。综述了喷射沉积铝基复合材料致密化技术的分类与发展;概述了铝基复合材料在变形过程中的回复与再结晶;论述了喷射沉积铝基复合材料力学性能的影响因素,分析了导致强韧性降低的因素。展望了喷射沉积铝基复合材料的发展趋势,对铝基体动态再结晶行为的影响因素、颗粒增强铝基复合材料强韧性的影响机制及复杂微观组织下材料的强韧化机制、完善与发展喷射沉积材料的致密工艺和机理进行了探讨,并提出了提高材料力学性能和强韧性的措施。  相似文献   

20.
两相体系中第二相颗粒粗化的研究进展   总被引:1,自引:0,他引:1  
综述了近年来两相体系中第二相颗粒粗化的研究进展,LSW理论能对颗粒的Ostwald熟化过程进行定量,并且第二相体积分数、弹性应力以及颗粒形状和合金元素等对Ostwald熟化过程有影响.LSW理论仍来源于驱动力的分析和基本方程的推导.对于纳米两相体系,其第二相颗粒的粗化仍满足经典的Ostwald熟化理论--LSW理论.纳米颗粒粗化行为的理论研究与钢铁生产紧密相联,钢铁产品的性能提高与其中夹杂物的尺寸控制有关,第二相Ostwald熟化理论将能有效应用于钢铁夹杂物纳米尺度的控制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号