首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以聚己内酯(PCL)和聚丙烯腈(PAN)为溶质,N,N-二甲基甲酰胺(DMF)和三氯甲烷(TCM)为溶剂,然后加入磁性四氧化三铁纳米颗粒,利用静电纺丝技术纺织出具有磁性的复合纳米纤维膜,作为微生物生长的载体,应用于污水处理中。观察在SEM、X射线衍射、红外光谱测试、差示扫描量热法进行测试,力学性能通过动态力学来分析。研究发现,PAN的加入改变了纤维内部结晶的位置,而且所得到的纳米纤维直径分布较均匀,没有黏连现象;热疲劳方面有着较好的抗性,提高了重复利用的性能。  相似文献   

2.
采用静电纺丝技术制备了聚己内酯(PCL)与胶原/丝素(COL/SF)质量比为0∶100、10∶90、20∶80、30∶70、40∶60、50∶50的复合微纳米纤维膜,通过扫描电子显微镜、力学性能测试和接触角测试等对复合纤维膜的理化性能进行表征,并将HepG_2细胞种植在复合纤维膜上检测其细胞生物相容性。结果表明:PCL/COL/SF复合微纳米纤维膜纤维形貌良好,纤维直径和亲水性随PCL含量的增加而减小;PCL/COL/SF复合纤维膜具有较好的力学性能。PCL与COL/SF质量比为30∶70时,复合纤维膜亲水性良好,强度和柔性最佳,并且HepG_2细胞在复合纤维膜表面黏附生长良好,细胞增殖情况明显,表明PCL与COL/SF质量比为30∶70的复合纤维膜有望成为一种良好的载体,可应用于体外肝细胞培养。  相似文献   

3.
采用静电纺丝技术制备了聚丙烯腈(PAN)/β-环糊精(β-CD)复合纳米纤维膜。利用扫描电子显微镜观察PAN/β-CD复合纳米纤维的表面形貌,利用傅里叶变换红外光谱和X射线衍射初步分析复合纳米纤维的结构,采用紫外可见光分光光度计考察复合纳米纤维膜对中性红的吸附性能。结果表明:PAN/β-CD复合纳米纤维表面光滑且直径均匀;在所研究范围内,β-CD较均匀地分散在复合纳米纤维中并保留自身的空腔结构;w(PAN)为10%,w(β-CD)为4%时,所制复合纳米纤维膜对中性红的吸附率高达78.0%;吸附过程是自发进行的,符合Langmuir等温吸附方程。  相似文献   

4.
利用静电纺丝技术制备了一种聚丙烯腈(PAN)/氧化铁(Fe_2O_3)纳米粒子复合纳米纤维。不同分子量的PAN得到不同直径的纤维薄;将PAN的N,N-二甲基甲酰胺溶液(DMF)与纳米Fe_2O_3混合得到PAN/Fe_2O_3溶液,然后利用静电纺丝技术制备PAN/Fe_2O_3纳米粒子复合纳米纤维;将静电纺丝制备的PAN纳米纤维膜与氯化铁(FeCl_3)溶液在不同p H条件下水热合成PAN/Fe_2O_3纳米粒子复合纳米纤维。采用扫描电子显微镜(SEM)、热重分析仪(TGA)对纳米纤维膜进行表征。结果表明:静电纺丝制备的PAN纳米纤维在水热条件下可以一定程度上克服Fe_2O_3纳米粒子易团聚问题。  相似文献   

5.
采用静电纺丝技术制备碳纳米管-聚丙烯腈(CNT-PAN)复合纳米纤维膜,以期利用CNT增强PAN纳米纤维的力学性能和染料吸附性能。通过扫描电子显微镜、物理吸附仪和电子万能试验机等对不同CNT含量的复合纤维膜的微观结构、孔隙率、比表面积以及力学性能进行了表征分析。以亚甲基蓝为模板分子研究了不同条件下纳米纤维膜对染料的吸附效果。结果表明,随着CNT含量的增加,纳米纤维的直径略微增大,膜孔隙率和孔径变化不大。CNT的加入明显提高了PAN的力学性能和对染料的吸附性能,CNT的质量分数为10%时CNT-PAN复合纳米纤维膜的性能最佳,与纯PAN纤维膜相比,断裂强度提高了152%,染料吸附率提高了将近30%。  相似文献   

6.
以聚丙烯腈(PAN)和β-环糊精(β-CD)为原料,以N,N-二甲基甲酰胺为溶剂,通过静电纺丝制备出不同β-CD含量的PAN/β-CD复合纳米纤维膜。采用扫描电镜、傅里叶变换红外光谱仪、X射线衍射仪、孔径及比表面积测定仪、紫外分光光度计对纳米纤维膜的形貌、结构、比表面积以及吸附性能进行了表征。结果表明:PAN/β-CD复合纳米纤维膜中,β-CD和PAN之间为简单的物理共混,β-CD保留了空腔结构;随着β-CD含量的增加,PAN/β-CD复合纳米纤维膜的直径增加,比表面积减小,对亚甲基蓝的吸附率增加;当β-CD相对PAN质量分数为40%时,PAN/β-CD复合纳米纤维膜的纤维直径粗细均匀,比表面积较小,为9.652 m2/g,对亚甲基蓝的吸附率较大,为97.48%。  相似文献   

7.
乳液静电纺丝可制备同时含有亲水和亲油两相结构的复合纳米纤维。以聚己内酯(PCL)/三氯甲烷为连续相,海藻酸钠(SA)/去离子水为分散相,失水山梨醇脂肪酸酯(Span80)为乳化剂,制备油包水(W/O)型乳液,并采用乳液静电纺丝技术制得SA/PCL复合纳米纤维膜,经与Ca2+置换制得海藻酸钙(CA)/PCL复合纤维膜,研究了SA溶液浓度对纤维成形的影响。结果表明:表面活性剂Span80和分散相SA水溶液的加入可有效增加PCL的可纺性;当乳液体系中SA溶液体积一定,SA溶液浓度对SA/PCL乳液的黏度无明显影响;随SA溶液浓度的增加,SA/PCL乳液的表面张力降低,SA/PCL复合纳米纤维的直径出现极大值,但均小于仅添加Span80所得的PCL纳米纤维;SA在复合纳米纤维成形过程中会向纤维表面迁移,从而可实现SA与Ca2+交换,且离子交换后形成纤维间的粘连结构。  相似文献   

8.
将聚丙烯腈(PAN)、纳米二氧化钛(TiO_2)溶于N,N-二甲基甲酰胺中,配制成混合溶液,通过静电纺丝制备PAN/TiO_2纳米纤维膜,研究了纳米TiO_2含量对PAN/TiO_2纳米纤维膜的结构与性能的影响。结果表明:随着TiO_2含量增加,PAN/TiO_2纳米纤维膜的平均直径稍许增大,但其外观形貌越来越差;TiO_2的加入对PAN/TiO_2纳米纤维膜的分子结构没有影响;随着TiO_2含量的增加,PAN/TiO_2纳米纤维膜的玻璃化转变温度和熔融温度升高,表面接触角下降,即耐热性能和润湿性能提高。  相似文献   

9.
分别将不同掺量的环糊精(β-CD)与聚丙烯腈(PAN)共混,利用静电纺丝法制备CD-PAN复合纳米纤维膜。使用扫描电子显微镜(SEM)、傅里叶红外光谱分析仪(FTIR)对纳米纤维的表面形态及纤维分子结构进行表征,并通过微机控制电子万能试验机测试CDPAN纳米纤维膜的力学性能。结果表明,β-CD环糊精均匀的分布在纤维中,β-CD的加入,向复合纤维膜中引入了羟基等,为纤维膜吸附重金属离子提供了条件;随着β-CD含量的增加,复合纤维直径逐渐增大,纤维膜断裂强力也呈现增长趋势;且环糊精含量为8wt%时,纤维膜强力最大,为8.22N,而断裂伸长的变化无明显规律。  相似文献   

10.
《合成纤维工业》2017,(6):43-46
采用N,N-二甲基甲酰胺(DMF)为极性溶剂溶解醋酸锌(Zn(Ac)_2·2H_2O),然后加入聚丙烯腈(PAN)制得前驱体溶液,采用静电纺丝法制备PAN/Zn(Ac)_2复合纳米纤维膜,将PAN/Zn(Ac)_2复合纳米纤维膜在真空管式炉中经过高温煅烧得到PAN基碳纤维/氧化锌(CF/ZnO)纳米纤维膜,以CF/ZnO纳米纤维膜为光催化剂,亚甲基蓝为污染物,进行光催化降解实验,研究了Zn(Ac)_2含量对PAN/Zn(Ac)_2复合纳米纤维形貌、性能的影响,以及CF/ZnO纳米纤维膜的光催化性能。结果表明:Zn(Ac)_2的掺入并未对PAN的化学结构产生影响,二者属于物理结合,Zn(Ac)_2能较均匀地分布在纤维的内部;随着Zn(Ac)_2含量的增加,CF/ZnO纳米纤维膜对亚甲基蓝的降解率会提高,当Zn(Ac)_2质量分数(相对PAN)为60%时,可见光照射80 min后CF/ZnO纳米纤维膜对亚甲基蓝的降解率达到91.6%。  相似文献   

11.
《合成纤维》2017,(2):43-48
以六氟异丙醇(HFIP)为溶剂,采用静电纺丝技术制备丝素(SF)-聚己内酯(PCL)复合纳米纤维膜。采用热场发射扫描电镜、Image-Pro Plus图像分析和力学拉伸的方法表征了纳米纤维膜的结构与力学性能。通过设计的三因素四水平正交试验对复合纳米纤维膜的多个指标进行了分析,采取归一化数据处理及平均权重分配的方式量化了复合纳米纤维膜的品质,确定了共混复合纳米纤维膜制备的最优工艺参数,并且采用最佳工艺参数制备了SF-PCL复合纳米纤维膜,分析了其力学性能。结果表明:在溶质质量分数为6%、溶质SF与PCL质量比为3∶2、纺丝流速1.2 mL/h时,SF-PCL复合纳米纤维膜具有较好的品质;双轴拉伸时的破坏机制与单轴不同,其断裂应力和应变只是单轴时的一半左右,膜的力学性能表现为各向同性。  相似文献   

12.
《山东化工》2021,50(1)
以聚丙烯腈(PAN)粉末为原料,N-N二甲基甲酰胺(DMF)为溶剂,制备PAN纳米纤维膜,根据纤维外貌、直径、孔隙率等探究纳米纤维膜的最佳PAN浓度。阳离子染料模拟印染废水,用PAN纳米纤维膜吸附阳离子染料,探究不同时间、不同初始浓度对亚甲基蓝(MB)吸附效果影响。结果表明:PAN浓度为10%时,纤维状态最佳; PAN纳米纤维膜的吸附率随着时间的增长先增大然后逐渐稳定,随MB质量浓度的增大先上升后降低。  相似文献   

13.
吴延鹏  赵薇  陈凤君 《化工学报》2020,71(z1):471-478
利用静电纺丝法制备了表面静态接触角为23.6°的具有亲水功能的PAN/PVP复合纳米纤维膜、接触角为81.2°的PAN纳米纤维膜、接触角为131.9°的具有疏水功能的PAN/PVDF复合纳米纤维膜。利用自行搭建的空气过滤实验台,在40%、55%、70%三种相对湿度下对三种纳米纤维膜进行空气过滤实验,对纳米纤维膜的过滤效率、阻力损失及品质因子进行分析。结果表明:三种纳米纤维膜的过滤效率随着相对湿度的增大而升高,PAN/PVP膜和PAN膜的阻力损失随着相对湿度的增大而增加,PAN/PVDF的阻力损失随着相对湿度的增大而减小;PAN/PVP膜和PAN膜的品质因子随着相对湿度的增大而减小,PAN/PVDF膜的品质因子随着相对湿度的增大而增大,湿度越大,PAN/PVDF纳米纤维膜的过滤性能越显著。  相似文献   

14.
利用静电纺丝法制备了含有不同质量分数(0、1%、3%、5%)有机改性蒙脱土(O/MMT)的聚丙烯腈复合纳米纤维膜,通过亚甲基蓝吸附分析比较了纤维膜的吸附性能。利用粘度、电导率、表面张力分析了MMT的含量对纺丝液性质的影响,利用扫描电子显微镜分析了不同比例O/MMT的加入对所制备的复合纳米纤维的形貌结构的影响,傅里叶变换红外光谱分析结果证实了O/MMT和PAN形成了纳米复合结构,同时借助热重分析仪分析了O/MMT的加入对复合纳米纤维膜热性能的影响。结果表明,随着O/MMT含量的增加,纤维变细、珠节增加,纤维膜的亚甲基蓝吸附能力也同时提高。  相似文献   

15.
为此制备了一种聚丙烯腈(PAN)/羧基化多壁碳纳米管(MWCNTs-COOH)复合纳米纤维膜并探究其对废水中Pb2+的吸附效果。将MWCNTs-COOH与PAN混合成溶液,通过静电纺丝技术,成功制备了PAN/MWCNTs-COOH复合纳米纤维膜;采用扫描电子显微镜观察其形貌;并在pH=3,5,7的条件下进行吸附实验,探究PAN/MWCNTsCOOH复合纳米纤维膜对Pb2+吸附性能及吸附机理,用准一级和准二级动力学模型模拟吸附动力学进一步阐述实验数据;通过过滤吸附实验进一步研究PAN/MWCNTs-COOH复合纳米纤维膜在实际应用中对水中Pb2+的清除性能。结果表明所制备的纳米纤维膜具有致密网状结构,形态良好;与pH=3,5条件下相比,在pH=7时,PAN/MWCNTsCOOH复合纳米纤维膜吸附性能最优,对Pb2+吸附率达到70%及以上,并在80 min左右达到平衡;吸附动力学研究表明PAN/MWCNTs-COOH复合纳米纤维膜对Pb2+可能是化学吸附;过滤实验显示PAN/MWC...  相似文献   

16.
在聚己内酯(PCL)/冰乙酸(GAC)溶液体系中加入低毒低挥发性溶剂碳酸乙烯酯(EC),采用静电纺丝法成功制备纳米纤维,采用扫描电子显微镜研究了不同EC浓度对制得的纤维形貌和直径的影响。结果表明,当溶液中PCL质量分数为20%,EC体积分数从0%变化到9%时,纳米纤维数量增加,平均直径逐渐变小;当EC体积分数从9%变化到15%时,微米纤维或珠串状纤维数量开始增加,平均直径逐渐变大。对比研究了EC体积分数为9%的溶液与未加EC的溶液的纺丝稳定性,同时对比研究了由这两种溶剂分别制备的纳米纤维膜和微米纤维膜的结构和性能。结果表明,PCL/GAC/EC溶液体系黏度可在24h内保持稳定,满足连续电纺要求;X射线衍射测试结果表明两种纤维膜结晶构型一致,只是结晶度和晶粒大小有所区别;傅里叶变换红外光谱分析结果表明EC对PCL的化学结构没有影响;与微米纤维膜相比,纳米纤维膜的比表面积提高了362.6%,平均孔直径有所减小,接触角有所增大;纳米纤维膜的拉伸断裂应力稍大但断裂应变明显小于微米纤维膜。  相似文献   

17.
通过静电纺丝和水热处理的方法成功制备了高效、可回收利用的聚丙烯腈/二氧化钛(PAN/TiO2)纳米纤维膜。采用扫描电子显微镜、X射线衍射和亚甲基蓝(MB)降解率等对PAN/TiO2纳米纤维膜形貌、晶体结构、力学性能以及光催化活性进行表征。结果表明,钛酸四丁酯(TBT)的添加有效减小了纤维直径;水热处理成功将TBT转化为锐钛矿TiO2,并且PAN/TiO2纳米纤维膜强度均高于纯PAN;紫外光照射120 min后,纤维膜对MB光催化降解率最大可达到94.8 %,同时连续5次回收再利用后纤维膜仍保持良好的光催化活性。  相似文献   

18.
研究了纺丝液浓度对聚丙烯腈(PAN)静电纺丝纤维直径,以及对PAN静电纺丝纳米纤维膜复合滤材过滤性能的影响。测试结果表明,纺丝液浓度增加,静电纺丝纤维直径变粗,孔径增大,其中质量分数为16%的纺丝液具有良好的纺丝性能,静电纺丝所得的纳米纤维直径均匀,复合后滤材在颗粒直径0.3μm,过滤风速5.3 cm/s的测试条件下,过滤效率达到99.98%,阻力为138 Pa,达到H13级别,具有高效低阻特性。  相似文献   

19.
以聚丙烯腈(PAN)为纺丝液,采用自主设计研发的螺纹式喷头静电纺丝装置制备了幅宽为600 mm的纳米纤维膜。通过扫描电镜和孔径测定仪考察了纤维形貌以及直径分布,并测试了纳米纤维膜对0.26μm氯化钠粒子的过滤性能。结果表明:纤维的平均直径为138 nm,平均孔径为1.98μm,纤维膜平均厚度为0.025 mm;PAN纳米纤维膜过滤效率为99.899%,滤阻为280.9 Pa。  相似文献   

20.
为拓展碳纳米纤维在环境保护与治理领域的应用,提高资源利用率,获得多功能型碳纳米纤维薄膜,利用静电纺丝法将氧化石墨烯(GO)与碳纳米纤维前驱体复合。以聚丙烯腈(PAN)基碳纳米纤维为载体,氧化石墨烯(GO)为改性添加剂,通过静电纺丝技术和预氧化、炭化处理制备石墨烯/碳纳米纤维复合纤维膜,研究不同GO含量和炭化温度对复合纤维膜性能的影响。结果表明:复合纤维膜的导电和吸油性能随炭化温度和GO添加量的增加而增强,炭化温度为1 100℃,GO添加量为4%时,复合纤维膜电导率达到1.63 S·cm-1,是未添加的2.64倍;吸油系数为23.3,是未添加的1.36倍;水接触角均大于90°,表现为疏水性;添加少量GO后复合纤维膜导电、吸油和疏水性能均得到提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号