首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A heme d prosthetic group with the configuration of a cis-hydroxychlorin gamma-spirolactone has been found in the crystal structures of Penicillium vitale catalase and Escherichia coli catalase hydroperoxidase II (HPII). The absolute stereochemistry of the two heme d chiral carbon atoms has been shown to be identical. For both catalases the heme d is rotated 180 degrees about the axis defined by the alpha-gamma-meso carbon atoms, with respect to the orientation found for heme b in beef liver catalase. Only six residues in the heme pocket, preserved in P. vitale and HPII, differ from those found in the bovine catalase. In the crystal structure of the inactive N201H variant of HPII catalase the prosthetic group remains as heme b, although its orientation is the same as in the wild type enzyme. These structural results confirm the observation that heme d is formed from protoheme in the interior of the catalase molecule through a self-catalyzed reaction.  相似文献   

2.
The crystal structure of human ornithine transcarbamoylase complexed with the bisubstrate analog N-phosphonacetyl-L-ornithine has been solved at 1.85-A resolution by molecular replacement. Deleterious mutations produce clinical hyperammonia that, if untreated, results in neurological symptoms or death (ornithine transcarbamylase deficiency). The holoenzyme is trimeric, and as in other transcarbamoylases, each subunit contains an N-terminal domain that binds carbamoyl phosphate and a C-terminal domain that binds L-ornithine. The active site is located in the cleft between domains and contains additional residues from an adjacent subunit. Binding of N-phosphonacetyl-L-ornithine promotes domain closure. The resolution of the structure enables the role of active site residues in the catalytic mechanism to be critically examined. The side chain of Cys-303 is positioned so as to be able to interact with the delta-amino group of L-ornithine which attacks the carbonyl carbon of carbamoyl phosphate in the enzyme-catalyzed reaction. This sulfhydryl group forms a charge relay system with Asp-263 and the alpha-amino group of L-ornithine, instead of with His-302 and Glu-310, as previously proposed. In common with other ureotelic ornithine transcarbamoylases, the human enzyme lacks a loop of approximately 20 residues between helix H10 and beta-strand B10 which is present in prokaryotic ornithine transcarbamoylases but has a C-terminal extension of 10 residues that interacts with the body of the protein but is exposed. The sequence of this C-terminal extension is homologous to an interhelical loop found in several membrane proteins, including mitochondrial transport proteins, suggesting a possible mode of interaction with the inner mitochondrial membrane.  相似文献   

3.
4.
An affinity resin for the F1 sector of the Escherichia coli ATP synthase was prepared by coupling the b subunit to a solid support through a unique cysteine residue in the N-terminal leader. b24-156, a form of b lacking the N-terminal transmembrane domain, was able to compete with the affinity resin for binding of F1. Truncated forms of b24-156, in which one or four residues from the C terminus were removed, competed poorly for F1 binding, suggesting that these residues play an important role in b-F1 interactions. Sedimentation velocity analytical ultracentrifugation revealed that removal of these C-terminal residues from b24-156 resulted in a disruption of its association with the purified delta subunit of the enzyme. To determine whether these residues interact directly with delta, cysteine residues were introduced at various C-terminal positions of b and modified with the heterobifunctional cross-linker benzophenone-4-maleimide. Cross-links between b and delta were obtained when the reagent was incorporated at positions 155 and 158 (two residues beyond the normal C terminus) in both the reconstituted b24-156-F1 complex and the membrane-bound F1F0 complex. CNBr digestion followed by peptide sequencing showed the site of cross-linking within the 177-residue delta subunit to be C-terminal to residue 148, possibly at Met-158. These results indicate that the b and delta subunits interact via their C-terminal regions and that this interaction is instrumental in the binding of the F1 sector to the b subunit of F0.  相似文献   

5.
E. coli catalase (HPII) wild type and mutant enzymes (heme dcis-containing) were examined (i) to study the role of a distal haem cavity residue, asparagine-201, in high spin ligand binding and (ii) to compare the differences in this binding between heme d and protoheme enzymes such as that from beef liver (BLC). High spin fluoride complexes were formed by all three HPII catalases examined, wild type (201 asn) and 201gln and 201asp mutants, but with a lower fluoride affinity than that of BLC. The binding of fluoride was pH-dependent, indicating that a proton is bound as well as a fluoride anion. HPII 201glu and 201 asp mutants showed lower affinities for fluoride than did wild type, unlike their reactions with cyanide which are essentially independent of the nature of residue 201. The equilibria and rates of fluoride and formate binding to BLC were reexamined. The rates of reaction with formate were similar to those reported previously. Dissociation rates for fluoride-catalase are higher than for formate suggesting that the latter may be bound differently. High spin complexes between formate and all three HPII forms showed a substantially higher affinity than that of BLC for HPII wild type and progressively lower affinities for the two mutants. As with fluoride the reactions were pH-dependent, indicating that a proton is bound together with the formate anion (or that undissociated formic acid is the ligand). The known structures of the heme groups and heme pockets involved are discussed. Formate may be bound by secondary H-bounds within the heme pocket in both heme dcis and protoheme enzymes. The nature of the heme pocket and the heme access channel may be more important than the chemical nature of the prosthetic group in controlling both high spin ligand interactions and reactions with the substrate hydrogen peroxide.  相似文献   

6.
The proteolytic enzyme stromelysin-1 is a member of the family of matrix metalloproteinases and is believed to play a role in pathological conditions such as arthritis and tumor invasion. Stromelysin-1 is synthesized as a pro-enzyme that is activated by removal of an N-terminal prodomain. The active enzyme contains a catalytic domain and a C-terminal hemopexin domain believed to participate in macromolecular substrate recognition. We have determined the three-dimensional structures of both a C-truncated form of the proenzyme and an inhibited complex of the catalytic domain by X-ray diffraction analysis. The catalytic core is very similar in the two forms and is similar to the homologous domain in fibroblast and neutrophil collagenases, as well as to the stromelysin structure determined by NMR. The prodomain is a separate folding unit containing three alpha-helices and an extended peptide that lies in the active site of the enzyme. Surprisingly, the amino-to-carboxyl direction of this peptide chain is opposite to that adopted by the inhibitor and by previously reported inhibitors of collagenase. Comparison of the active site of stromelysin with that of thermolysin reveals that most of the residues proposed to play significant roles in the enzymatic mechanism of thermolysin have equivalents in stromelysin, but that three residues implicated in the catalytic mechanism of thermolysin are not represented in stromelysin.  相似文献   

7.
UDP-GlcNAc: alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I (GnTI, EC 2.4.1.101) plays an essential role in the conversion of oligomannose to complex and hybrid N-glycans. Rabbit GnTI is 447 residues long and has a short four-residue N-terminal cytoplasmic tail, a 25-residue putative signal-anchor hydrophobic domain, a stem region of undetermined length and a large C-terminal catalytic domain, a structure typical of all glycosyltransferases cloned to date. Comparison of the amino acid sequences for human, rabbit, mouse, rat, chicken, frog and Caenorhabditis elegans GnTI was used to obtain a secondary structure prediction for the enzyme which suggested that the location of the junction between the stem and the catalytic domain was at about residue 106. To test this hypothesis, several hybrid constructs containing GnT I with N- and C-terminal truncations fused to a mellitin signal sequence were inserted into the genome of Autographa californica nuclear polyhedrosis virus (AcMNPV), Sf9 insect cells were infected with the recombinant baculovirus and supernatants were assayed for GnTI activity. Removal of 29, 84 and 106 N-terminal amino acids had no effect on GnTI activity; however, removal of a further 14 amino acids resulted in complete loss of activity. Western blot analysis showed strong protein bands for all truncated enzymes except for the construct lacking 120 N-terminal residues indicating proteolysis or defective expression or secretion of this protein. The data indicate that the stem is at least 77 residues long.  相似文献   

8.
The chloroplastic NADP malate dehydrogenase is completely inactive in its oxidized form and is activated by thiol/disulfide interchange with reduced thioredoxin. To elucidate the molecular mechanism underlying the absence of activity of the oxidized enzyme, we used site-directed mutagenesis to delete or substitute the two most C-terminal residues (C-terminal Val, penultimate Glu, both bearing negative charges). We also combined these mutations with the elimination of one or both of the possible regulatory N-terminal disulfides by mutating the corresponding cysteines. Proteins mutated at the C-terminal residues had no activity in the oxidized form but were partially inhibited when pretreated with the histidine-specific reagent diethyl pyrocarbonate before activation, showing that the active site was partially accessible. Proteins missing both N-terminal regulatory disulfides reached almost full activity without activation upon elimination of the negative charge of the penultimate Glu. These results strongly support a model where the C-terminal extension is docked into the active site through a negatively charged residue, acting as an internal inhibitor. They show also that the reduction of both N-terminal bridges is necessary to release the C-terminal extension from the active site. This is the first report for a thiol-activated enzyme of a regulatory mechanism resembling the well known intrasteric inhibition of protein kinases.  相似文献   

9.
The complete nucleotide sequence of the gene encoding the Corynebacterium glutamicum mannose enzyme II (EIIMan) was determined. The gene consisted of 2052 base pairs encoding a protein of 683 amino acid residues; the molecular mass of the protein subunit was calculated to be 72570 Da. The N-terminal hydrophilic domain of EIIMan showed 39.7% homology with a C-terminal hydrophilic domain of Escherichia coli glucose-specific enzyme II (EIIGlc). Similar homology was shown between the C-terminal sequence of EIIMan and the E. coli glucose-specific enzyme III (EIIIGlc), or the EIII-like domain of Streptococcus mutans sucrose-specific enzyme II. Sequence comparison with other EIIs showed that EIIMan contained residues His-602 and Cys-28 which were homologous to the potential phosphorylation sites of EIIIGlc, or EIII-like domains, and hydrophilic domains (IIB) of several EIIs, respectively.  相似文献   

10.
Solution conformations of the alpha and beta subunits of the Oxytricha nova telomere binding protein have been investigated by Raman spectroscopy. Raman spectra have also been obtained for a deletion mutant of the beta subunit, betaC232, which retains the N-terminal domain that is active in ternary complex (alpha:beta:DNA) formation but lacks the C-terminal domain that is active in catalyzing guanine quadruplex formation. The Raman spectra show that alpha, beta, and betaC232 are rich in beta-strand secondary structure ( approximately 40-50%) and turns. The Raman signature of the C-terminal 153 amino acids of beta, generated by subtracting the spectrum of betaC232 (residues 1-232) from that of the full subunit, indicates that the domain active in guanine quadruplex formation contains less beta-strand secondary structure and more irregular structure than the domain active in alpha:beta:DNA formation. Raman markers also provide information about the environments and orientations of several key side chains, including tryptophan residues in N- and C-terminal domains of the beta subunit. Both alpha and beta denature between 30 and 40 degrees C, as evidenced by large changes in Raman bands diagnostic of main chain conformation and side chain environments. The Raman spectrum of an equimolar alpha/beta mixture exhibits no evidence of specific interaction between the subunits; further, the denaturation profile of this mixture is indistinguishable from the sum of denaturation profiles of the constituent subunits, consistent with the absence of appreciable interaction between alpha and beta throughout the range 0-50 degrees C. The present results provide insights into the solution conformations of the Oxytricha telomere binding protein subunits and serve as the basis for future study of subunit interactions with telomeric DNA.  相似文献   

11.
The sequence of the N-terminal end of the deduced ctaC gene product of Bacillus species has the features of a bacterial lipoprotein. CtaC is the subunit II of cytochrome caa3, which is a cytochrome c oxidase. Using Bacillus subtilis mutants blocked in lipoprotein synthesis, we show that CtaC is a lipoprotein and that synthesis of the membrane-bound protein and covalent binding of heme to the cytochrome c domain is not dependent on processing at the N-terminal part of the protein. Mutants blocked in prolipoprotein diacylglyceryl transferase (Lgt) or signal peptidase type II (Lsp) are, however, deficient in cytochrome caa3 enzyme activity. Removal of the signal peptide from the CtaC polypeptide, but not lipid modification, is seemingly required for formation of functional enzyme.  相似文献   

12.
To investigate the biochemical properties of individual domains of eukaryotic topoisomerase (topo) II, two truncation mutants of Drosophila topo II were generated, ND406 and core domain. Both mutants lack the ATPase domain, corresponding to the N-terminal 406 amino acid residues in Drosophila protein. The core domain also lacks 240 amino acid residues of the hydrophilic C-terminal region. The mutant proteins have lost DNA strand passage activity while retaining the ability to cleave the DNA and the sequence preference in protein/DNA interaction. The cleavage experiments carried out in the presence of several topo II poisons suggest that the core domain is the key target for these drugs. We have used glass-fiber filter binding assay and CsCl density gradient ultracentrifugation to monitor the formation of a salt-stable, protein-clamp complex. Both truncation mutant proteins can form a clamp complex in the presence of an antitumor agent, ICRF-159, suggesting that the drug targets the core domain of the enzyme and promotes the intradimeric closure at the N-terminal interface of the core domain. Furthermore, the salt stability of the closed protein clamp induced by ICRF-159 depends on the presence and closure of the N-terminal ATPase domain.  相似文献   

13.
Cytosolic glutathione S-transferase is a family of multi-functional enzymes involved in the detoxification of a large variety of xenobiotic and endobiotic compounds through glutathione conjugation. The three-dimensional structure of Escherichia coli glutathione S-transferase complexed with glutathione sulfonate, N-(N-L-gamma-glutamyl-3-sulfo-L-alanyl)-glycine, has been determined by the multiple isomorphous replacement method and refined to a crystallographic R factor of 0.183 at 2.1 A resolution. The E. coli enzyme is a globular homodimer with dimensions of 58 Ax56 Ax52 A. Each subunit, consisting of a polypeptide of 201 amino acid residues, is divided into a smaller N-terminal domain (residues 1 to 80) and a larger C-terminal one (residues 89 to 201). The core of the N-terminal domain is constructed by a four-stranded beta-sheet and two alpha-helices, and that of the C-terminal one is constructed by a right-handed bundle of four alpha-helices. Glutathione sulfonate, a competitive inhibitor against glutathione, is bound in a cleft between the N and C-terminal domains. Therefore, the E. coli enzyme conserves overall constructions common to the eukaryotic enzymes, in its polypeptide fold, dimeric assembly, and glutathione-binding site. In the case of the eukaryotic enzymes, tyrosine and serine residues near the N terminus are located in the proximity of the sulfur atom of the bound glutathione, and are proposed to be catalytically essential. In the E. coli enzyme, Tyr5 and Ser11 corresponding to these residues are not involved in the interaction with the inhibitor, although they are located in the vicinity of catalytic site. Instead, Cys10 N and His106 Nepsilon2 atoms are hydrogen-bonded to the sulfonate group of the inhibitor. On the basis of this structural study, Cys10 and His106 are ascribed to the catalytic residues that are distinctive from the family of the eukaryotic enzymes. We propose that glutathione S-transferases have diverged from a common origin and acquired different catalytic apparatuses in the process of evolution.  相似文献   

14.
The C subunit of Dictyostelium cAMP-dependent protein kinase (PKA) is unusually large (73 kDa) due to the presence of 330 amino acids N-terminal to the conserved catalytic core. The sequence following the core, including a C-terminal -Phe-Xaa-Xaa-Phe-COOH motif, is highly conserved. We have characterized the catalytic activity and stability of C subunits mutated in sequences outside the catalytic core and we have analyzed their ability to interact with the R subunit and with the heat-stable protein-kinase inhibitor PKI. Mutants carrying deletions in the N-terminal domain displayed little difference in their kinetic properties and retained their capacity to be inhibited by R subunit and by PKI. In contrast, the mutation of one or both of the phenylalanine residues in the C-terminal motif resulted in a decrease of catalytic activity and stability of the proteins. Inhibition by the R subunit or by PKI were however unaffected. Sequence-comparison analysis of other protein kinases revealed that a -Phe-Xaa-Xaa-Phe- motif is present in many Ser/Thr protein kinases, although its location at the very end of the polypeptide is a particular feature of the PKA family. We propose that the presence of this motif may serve to identify isoforms of protein kinases.  相似文献   

15.
The solution structure of the ectodomain of simian immunodeficiency virus (SIV) gp41 (e-gp41), consisting of residues 27-149, has been determined by multidimensional heteronuclear NMR spectroscopy. SIV e-gp41 is a symmetric 44 kDa trimer with each subunit consisting of antiparallel N-terminal (residues 30-80) and C-terminal (residues 107-147) helices connected by a 26 residue loop (residues 81-106). The N-terminal helices of each subunit form a parallel coiled-coil structure in the interior of the complex which is surrounded by the C-terminal helices located on the exterior of the complex. The loop region is ordered and displays numerous intermolecular and non-sequential intramolecular contacts. The helical core of SIV e-gp41 is similar to recent X-ray structures of truncated constructs of the helical core of HIV-1 e-gp41. The present structure establishes unambiguously the connectivity of the N- and C-terminal helices in the trimer, and characterizes the conformation of the intervening loop, which has been implicated by mutagenesis and antibody epitope mapping to play a key role in gp120 association. In conjunction with previous studies, the solution structure of the SIV e-gp41 ectodomain provides insight into the binding site of gp120 and the mechanism of cell fusion. The present structure of SIV e-gp41 represents one of the largest protein structures determined by NMR to date.  相似文献   

16.
The peptide Ca2+ channel antagonists found in the venoms of Conus snails, omega-conotoxins, are synthesized as precursors that include a leader peptide, presumed to direct the polypeptide to the endoplasmic reticulum, and a propeptide of unknown function. In addition, the precursors are synthesized with a C-terminal Gly residue that is posttranslationally converted to a terminal amide group. In order to determine whether the precursor sequences contain information that helps direct folding of the mature sequences, the disulfide-coupled folding of mature omega-conotoxin MVIIA was compared with that of two putative precursor forms: pro-omega-MVIIA-Gly, which contains the propeptide and the C-terminal Gly residue, and omega-MVIIA-Gly, which differs from the mature form only at the C-terminus. The three forms folded with similar kinetics, but the folding efficiency of omega-MVIIA-Gly was greater than 80%, versus approximately 50% for both mature omega-MVIIA and the form containing the propeptide. The enzyme protein disulfide isomerase was found to catalyze disulfide formation and folding of all three forms similarly. The affinity of omega-MVIIA-Gly for receptors in chick brain synaptosomes was approximately 10-fold lower than that of the mature peptide, and the N-terminal propeptide of pro-omega-MVIIA-Gly was found to decrease binding further, by approximately 100-fold. These results suggest that the omega-conotoxins do not rely on the propeptide region of their precursors to facilitate folding. Rather, the mature sequence contains most of the information required to specify the native disulfide pairings and three-dimensional conformation. The C-terminal Gly may enhance the folding efficiency by forming interactions that stabilize the native conformation with respect to other disulfide-bonded forms.  相似文献   

17.
Succinyl-CoA synthetase (SCS) carries out the substrate-level phosphorylation of GDP or ADP in the citric acid cycle. A molecular model of the enzyme from Escherichia coli, crystallized in the presence of CoA, has been refined against data collected to 2.3 A resolution. The crystals are of space group P4322, having unit cell dimensions a=b=98.68 A, c=403.76 A and the data set includes the data measured from 23 crystals. E. coli SCS is an (alphabeta)2-tetramer; there are two copies of each subunit in the asymmetric unit of the crystals. The crystal packing leaves two choices for which pair of alphabeta-dimers form the physiologically relevant tetramer. The copies of the alphabeta-dimer are similar, each having one active site where the phosphorylated histidine residue and the thiol group of CoA are found. CoA is bound in an extended conformation to the nucleotide-binding motif in the N-terminal domain of the alpha-subunit. The phosphoryl group of the phosphorylated histidine residue is positioned at the amino termini of two alpha-helices, one from the C-terminal domain of the alpha-subunit and the other from the C-terminal domain of the beta-subunit. These two domains have similar topologies, despite only 14 % sequence identity. By analogy to other nucleotide-binding proteins, the binding site for the nucleotide may reside in the N-terminal domain of the beta-subunit. If this is so, the catalytic histidine residue would have to move about 35 A to react with the nucleotide.  相似文献   

18.
Limited proteolysis of the NAD+-dependent DNA ligase from Bacillus stearothermophilus with thermolysin results in two fragments which were resistant to further proteolysis. These fragments were characterised by N-terminal protein sequencing and electrospray mass spectrometry. The larger, N-terminal fragment consists of the first 318 residues and the smaller, C-terminal fragment begins at residue 397 and runs to the C terminus. Both fragments were over-expressed in Escherichia coli and purified to homogeneity from this source. The large fragment retains the full self-adenylation activity of the intact enzyme, has minimal DNA binding activity and vastly reduced ligation activity. The small fragment lacks adenylation activity but binds to nicked DNA with a similar affinity to that of the intact enzyme. It is unable to stimulate the ligation activity of the large fragment. Atomic absorption spectroscopy showed that the intact protein and the small fragment bind a zinc ion but the large fragment does not. No evidence of any interaction between the two fragments could be obtained. Thus, we conclude that NAD+-dependent DNA ligases consist of at least two discrete functional domains: an N-terminal domain which is responsible for cofactor binding and self adenylation, and a C-terminal DNA-binding domain which contains a zinc binding site.  相似文献   

19.
20.
alpha-Lytic protease is encoded with a large (166 amino acid) N-terminal pro region that is required transiently both in vivo and in vitro for the correct folding of the protease domain [Silen, J. L. , and Agard, D. A. (1989) Nature 341, 462-464; Baker, D., et al. (1992) Nature 356, 263-265]. The pro region also acts as a potent inhibitor of the mature enzyme [Baker, D., et al. (1992) Proteins: Struct.,Funct., Genet. 12, 339-344]. This inhibition is mediated through direct steric occlusion of the active site by the C-terminal residues of the pro region [Sohl, J. L., et al. (1997) Biochemistry 36, 3894-3904]. Through mutagenesis and structure-function analyses we have begun to investigate the mechanism by which the pro region acts as a single turnover catalyst to facilitate folding of the mature protease. Of central interest has been mapping the interface between the pro region and the protease and identifying interactions critical for stabilizing the rate-limiting folding transition state. Progressive C-terminal deletions of the pro region were found to have drastic effects on the rate at which the pro region folds the protease but surprisingly little effect on inhibition of protease activity. The observed kinetic data strongly support a model in which the detailed interactions between the pro region C-terminus and the protease are remarkably similar to those of known substrate/inhibitor complexes. Further, mutation of two protease residues near the active site have significant effects on stabilization of the folding transition state (kcat) or in binding to the folding intermediate (KM). Our results suggest a model for the alpha-lytic protease pro region-mediated folding reaction that may be generally applicable to other pro region-dependent folding reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号