首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用5种激光功率在40CrMnMo钢表面制备了FeCoCrNiMn高熵合金涂层,采用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)、维氏显微硬度计、应力分析仪、摩擦磨损试验机和电化学工作站等对涂层的显微组织、物相、力学性能及耐蚀性能进行了研究,分析了激光功率对熔覆层组织与性能的影响。结果表明:激光熔覆制备的FeCoCrNiMn涂层的组织主要为FCC固溶体相,当激光功率大于1400 W时,涂层出现BCC相(α-Fe)结构,组织为树枝晶,晶内为马氏体;随着激光功率的增大,涂层残余应力先减小后增加,在1000 W时达到最小值,为215.3 MPa,涂层的硬度为先增大后减小,1000 W时达最大值215.4 HV0.3;激光功率1000 W时涂层的耐磨性最佳,磨损率最低,为1.406×10-5 g·N-1·m-1;激光功率1200 W时涂层的耐腐蚀性最佳,涂层的自腐蚀电位最大,为-0.24 V,自腐蚀电流密度最小,为2.37×10-9 A·cm-2。综合分析试验结果,激光...  相似文献   

2.
选取单质混合粉末,在纯Zr基板上利用激光熔覆技术制备了Zr-Cu-Ni-Al非晶涂层。采用X射线衍射分析仪(XRD)、扫描电镜(SEM)、显微硬度仪及电化学工作站研究了激光功率对熔覆层显微组织与性能的影响。结果表明:熔覆涂层由非晶相、金属间化合物及部分金属氧化物等共同组成,熔覆涂层树枝晶尺寸随着激光功率的增加而增大,熔覆涂层的硬度随着树枝晶尺寸增大而降低,涂层硬度最高可达(567.1±12.3)HV0.5,是基体硬度的4.2倍;当激光功率为1000 W,扫描速率为800 mm/min时,涂层的耐蚀性能最好,其中自腐蚀电位为-0.182 V,电流密度为5.2×10^-8 A/cm^2。  相似文献   

3.
为了探究激光功率对熔覆层组织与性能的影响,采用6种激光功率在42CrMo钢表面制备了FeCoNiCrMo高熵合金熔覆层。通过X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)、维氏显微硬度计、应力分析仪、摩擦磨损试验机和电化学工作站对熔覆层的显微组织、物相、力学性能及耐蚀性能进行了研究。结果表明:激光熔覆制备的FeCoNiCrMo涂层的组织主要为FCC固溶体相,当激光功率大于1.6 kW时,涂层出现BCC相(α-Fe)结构,组织为树枝晶,枝晶内为马氏体,枝晶间为含Cr、Mo元素的铁素体;随着激光功率增大,涂层硬度先增大后减小,1.6 kW时达最大值522 HV0.3;激光功率1.8 kW时涂层的耐磨性与耐腐蚀性最好,磨损率与自腐蚀电流密度分别为0.71×10-5 g·N-1·m-1和1.69×10-9 A·cm-2。激光功率是影响FeCoNiCrMo高熵合金涂层组织与性能的重要因素,提高激光功率有利于促进BCC相的生成,显著提高涂层力学性能及腐蚀性能。  相似文献   

4.
柱塞表面激光熔覆铁基涂层的强韧化机理   总被引:3,自引:3,他引:0       下载免费PDF全文
文中在柱塞表面激光熔覆制备高硬度铁基涂层,采用SEM,XRD,EPMA和TEM等手段研究熔覆层组织特征及耐磨性,阐述其强韧化机理.结果表明,激光熔覆铁基合金涂层成形良好,无裂纹及气孔等缺陷,熔覆层与基体呈冶金结合,组织由(Ni,Fe)固溶体、(Cr,Fe)23C6碳化物和少量孪晶马氏体组成.铁基熔覆层的强化机制主要有细晶强化、固溶强化、弥散强化以及马氏体强化;熔覆层内(Ni,Fe)固溶体及细晶强化的综合作用,保证了高硬度铁基涂层的韧性.铁基熔覆层显微硬度较45钢提高4倍,最大值HHV0.2=850 GPa;熔覆层耐磨性明显高于45钢,45钢表面出现大面积疲劳剥落,铁基熔覆层磨损面平整,磨痕很浅且少,磨损机制为轻微的磨粒磨损.  相似文献   

5.
为探究激光熔覆再制造修复工艺对盾构机密封跑道磨痕的修复效果,采用送粉式激光熔覆工艺在42CrMo钢基体表面制备了Fe55铁基自熔合金涂层。基于L16(43)正交试验探究了激光功率、熔覆速率和搭接率对涂层表面形貌、横截面特征参数、稀释率、显微组织、硬度的影响规律和作用机理。极差分析表明,稀释率随激光功率和熔覆速率的增加均呈上升趋势,其中激光功率对涂层硬度影响最大,最大涂层硬度约为基体硬度的2.15倍。Fe55涂层的摩擦因数较基体明显降低,涂层耐磨性优良,其磨损体积较基体降低1.09×10-2 mm3,主要磨损机制为磨粒磨损和疲劳磨损。  相似文献   

6.
目的 提高铸铁表面耐磨、耐腐蚀性能.方法 采用激光熔覆技术在铸铁表面制备哈氏合金C276涂层,采用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)研究其显微组织、化学成分、相组成.通过摩擦磨损试验机和电化学试验站,对基体和熔覆层的摩擦磨损性能及耐腐蚀性能进行测试.结果 熔覆层中有析出性气孔,未见裂纹.在激光高温热源的作用下,熔覆层中的合金元素扩散到了铸铁基体中,且过渡平稳,形成了良好的冶金结合,在界面处形成了马氏体和莱氏体.熔覆层主相为γ-Ni及Ni6Mo6C、M6C(Ni3Mo3C、Ni2W4C)等碳化物.熔覆层从底部到顶部依次形成了平面晶、胞状晶、柱状树枝晶、发达树枝晶、胞状树枝晶和少量等轴树枝晶.熔覆层的平均硬度为370HV0.2,平均摩擦系数为0.28,1 h的磨损量为0.081 g,自腐蚀电位Ecorr为–0.32 V,自腐蚀电流密度Jcorr为8.51×10–7 A/cm2.基体的耐磨性较差,腐蚀倾向较大,平均硬度为180HV0.2,平均摩擦系数为0.34,1 h的磨损量为0.318 g,自腐蚀电位Ecorr为–0.79 V,自腐蚀电流密度Jcorr为3.31×10–6 A/cm2.结论 在铸铁表面采用激光熔覆技术制备C276哈氏合金涂层,成形效果良好,耐磨性能和耐腐蚀性能显著提高.  相似文献   

7.
目前激光熔覆缺少对涂层组织、相结构纵向均质性与性能关联的研究。采用激光熔覆技术,选取不同的激光功率,制备(Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14高熵合金涂层;借助电子探针(EPMA)、扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)等观察涂层微观组织与物相纵向分布,利用显微硬度计和摩擦磨损试验机测试涂层不同深度部位显微硬度及磨损性能,分析激光功率对熔覆(Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14涂层纵向组织、物相分布影响规律及磨损性能。结果表明:三种功率下,涂层均由BCC+FCC相、硬质相Mo2B组成,Mo2B在枝晶间富集。随着功率的增加,涂层中底部显微组织由细枝晶向粗大的柱状晶转变。三种涂层硬...  相似文献   

8.
以17-4PH不锈钢为基体材料,采用激光熔覆技术在不同激光功率(1600, 1800, 2000, 2200 W)下制备了FeCoNiCrMo高熵合金/氧化石墨烯复合涂层,研究了复合涂层的显微组织、物相组成、显微硬度分布和耐腐蚀性能。结果表明,制备的FeCoNiCrMo高熵合金/氧化石墨烯复合涂层的微观组织由体心立方(BCC)固溶体和M23C6、M7C3、Co2C等金属间化合物组成;随着激光功率的增加,金属间化合物形成的析出相增加,涂层耐腐蚀性能先增加后降低。当激光功率为2000 W时,涂层的硬度最高,且具有最佳的耐腐蚀性能,其自腐蚀电位为0.631 V,约为基体的2.66倍,自腐蚀电流密度为0.319 μA/cm2。激光功率是影响FeCoNiCrMo高熵合金/氧化石墨烯复合涂层组织及耐腐蚀性的显著因素,激光功率的增大促进了涂层中碳化物析出相的生长,有利于提高涂层硬度与耐腐蚀性能,但过高的激光功率下生成的大量硬质金属间化合物增大了涂层的裂纹敏感性,涂层产生明显裂纹,导致涂层耐腐蚀性能降低。  相似文献   

9.
目的 研究NbC颗粒的加入量对H13钢表面激光熔覆NbC/Ni60复合涂层的组织、硬度和耐磨性的影响。方法 将Ni60合金粉末与NbC碳化物粉末球磨混合,采用激光熔覆技术,在H13钢基体表面制备不同NbC含量(质量分数分别为0%、10%、20%、30%)增强的NbC/Ni60合金复合涂层。采用电子扫描显微镜(SEM)、X射线衍射仪对复合涂层的微观组织和物相进行分析。借助显微硬度计,研究复合涂层的截面显微硬度分布规律。采用高温摩擦磨损试验机测试复合涂层在真空400℃下的摩擦磨损性能。结果 在激光熔覆NbC/Ni60复合涂层中,物相主要由γ-(Ni, Fe)固溶体、Ni2Si、CrB、Cr23C6、NbC组成;熔覆层以胞晶和枝晶为主,NbC含量对复合熔覆层组织及形态具有显著影响,加入少量NbC可使熔覆层组织细化;在NbC的质量分数为20%时,大量弥散的Nb C颗粒在枝晶间呈聚集趋势;在NbC的质量分数为30%时,熔覆层中NbC相呈现块状、花瓣状形貌。NbC/Ni60复合涂层的硬度显著高于H13钢基体,随着NbC含量的增加,N...  相似文献   

10.
目的 设计超高速线光斑激光熔覆送粉喷嘴,在极高的熔覆效率和极低的搭接率下制备不锈钢熔覆涂层,对比研究圆光斑及线光斑下的熔覆涂层的微观组织结构及性能。方法 基于送粉喷嘴流场及粉末粒子运动轨迹的模拟研究,设计超高速线光斑激光熔覆专用送粉喷嘴。在此基础上,以27SiMn为基体,采用1 mm´ 10 mm线光斑,在10%搭接率、熔覆效率4.5 m2/h下,采用超高速线光斑激光熔覆FeCr合金薄涂层;作为对比,采用超高速圆形光斑(2 mm)激光在0.2 m2/h熔覆效率下熔覆FeCr合金涂层。采用SEM、XRD对比分析线光斑/圆光斑涂层微观组织结构与涂层显微硬度。结果 通收束角度为25°~27°的单流道送粉喷嘴可得到分布均匀、飞行速度适中的粉末束流。对比研究超高速线光斑及圆光斑激光熔覆涂层可知,相同扫描速度下2种光斑制备的涂层均较为致密,无裂纹与气孔,由熔覆层底部到熔覆层表面均呈现出平面晶—柱状晶—等轴晶的变化趋势,线光斑和圆光斑涂层硬度在700~800HV,线光斑下的熔覆层硬度分布更加均匀,表面粗糙度Ra可低至<4 μm,搭接率可低至10%,熔覆效率可达 4.5 m2/h,远高于圆光斑激光下的熔覆效率。结论 2种光斑模式下的涂层微观组织、相组成及硬度相当,但超高速线光斑激光熔覆层表面光洁度更高,表面粗糙度更低,熔覆效率可达圆光斑的20倍。  相似文献   

11.
激光熔覆技术   总被引:1,自引:0,他引:1  
概括地介绍了激光熔覆技术的机理、材料体系、工艺参数及国内外发展现状。  相似文献   

12.
激光熔覆技术   总被引:1,自引:0,他引:1  
概括地介绍了激光熔覆技术的机理、材料体系、工艺参数及国内外发展现状。  相似文献   

13.
激光熔覆工艺参数对单道熔覆层宏观尺寸的影响   总被引:1,自引:0,他引:1  
研究了扫描速度、送粉速率对单道熔覆层的宽度、高度及单道熔覆层接触角的影响。结果表明,熔覆层的宽度、高度随扫描速率的增大而减小;熔覆层的宽度随送粉速率的改变变化不大;熔覆层的高度随送粉速率的增加而增加;接触角随熔覆层高宽比的改变而变化。  相似文献   

14.
国外激光熔覆设备   总被引:2,自引:1,他引:2  
国外激光熔覆使用的激光器类型有CO2激光器、灯泵浦Nd:YAG激光器、二级管泵浦Nd;YAG激光器和二极管激光器,开发了多种合金材料供给设备,诸如同轴送粉系统,三料斗送粉系统,送丝系统等,使用众多种类的反射式、透射式和光纤传输的匀光光束处理系统,研制了熔覆过程激光束各参量、送粉率、粉末束流的浓度和温度分布以及熔池行为等的在线监控系统,从而保证了熔覆质量的稳定性和复重性。  相似文献   

15.
This paper reports major advances in the understanding, refinement and application of high-power laser beam cladding. The most important relationships between essential laser process variables and clad characteristics are defined. The unmatched control of energy inherent in laser beam processing has satisfied challenging, requirements in material cladding applications. Significant refinements in control of optics, substrate and consumables are reported. Unprecedented applications, such as cladding of copper on steel and cladding within confined space envelopes, highlight the technical advantages of the laser process and underscore rewards of investments in laser metalworking development.  相似文献   

16.
激光熔覆耐磨涂层的研究进展   总被引:23,自引:2,他引:23  
介绍了以镍基、钴基合金为主的激光熔覆耐磨涂层的研究进展,分析了熔覆层开裂等问题。目前激光熔覆工艺研究较为活跃,而对其加热、凝固过程的相变动力学、热力学、扩散过程和界面行为以及熔覆层显微组织、相结构的研究相对较弱;对熔覆层开裂问题的研究多集中在工艺参数和凝固组织特征上,要彻底解决熔覆层开裂问题,应从微观角度入手,分析熔覆层显微组织结构和相组成对熔覆层裂纹的影响。  相似文献   

17.
激光熔覆Fe-C-Si-B的研究   总被引:12,自引:4,他引:12  
采用Fe-C-Si-B粉末在灰铸铁基体上进行了一系列的激光熔覆试验,获得了预期的按介稳系结晶的组织,其细化程度高于C-Si-B激光合金化。形成的熔覆层金属对灰铸铁具有良好的润湿性。采用预置粉末法进行激光熔覆时在一定的工艺参数下会出现熔深的波动现象,多道搭接熔覆时裂纹产生的几率比单道熔覆高,Fe-C-Si-B粉末中添加少量CaF2可显著改善熔覆粉末的工艺性能。  相似文献   

18.
激光熔覆技术的研究进展   总被引:6,自引:0,他引:6  
综述了激光熔覆技术的原理、工艺特点和熔覆材料的选择,分析了激光熔覆技术的应用范围,对其未来的发展方向作了展望.  相似文献   

19.
Laser cladding techniques have recently enjoyed attention in preparing in-situ novel surface clad alloys with extended solid solution. Mass transport involved in this process is rather intriguing since it plays the major role in producing new materials without being restricted by equilibrium phase diagram. Although earlier work has identified convection as the dominant factor for homogeneous liquid metal composition, very little is understood about the solute redistribution at the solid-liquid interface under such non-equilibrium conditions. In this paper, a mathematical model is presented for determining the composition of extended solid solution formed due to rapid cooling in laser cladding. This model considers a diffusion mechanism for mass transport in a one-dimensional semi-infinite molten pool of the cladding material from which heat is removed by conduction through a one-dimensional semi-infinite solid substrate. The rate of solidification was obtained by modeling the cooling process as a composite medium heat transfer problem, and the discontinuity of the concentration field was simulated using a nonequilibrium partition coefficient. A non-similar exact solution for the mass transport equation was obtained using a set of similarity variables derived using Lie group theory.  相似文献   

20.
本研究采用激光熔覆技术,在低碳钢表面制备了ZrC增强的CoCrNi合金涂层。研究了ZrC的不同分数(0, 1, 3, 5 wt.%)对CoCrNi基中熵合金涂层组织、硬度和耐磨性的影响。利用X射线衍射仪、扫描电镜和能谱仪分析了涂层的相组成及微观组织结构,并采用显微硬度和摩擦磨损试验对样品的硬度和耐磨性进行了测试。结果表明:熔覆层与基体形成了良好的冶金结合,没有出现明显的裂纹和及空洞等缺陷。不含ZrC的CoCrNi中熵合金涂层由单相FCC结构组成,随着涂层中ZrC的加入,涂层中的物相组成变为了FCC+ ZrC0.7+Cr23C6+ZrO2。涂层的晶粒得到了明显细化,实现了晶界强化、固溶强化和弥散强化(Orowan)的共同作用,形成的碳化物Cr23C6相与FCC固溶体结合形成共晶碳化物,起到了协同强化作用,有效地提高了涂层的硬度和耐磨性。然而ZrC中的Zr与空气中的杂质O结合生成的ZrO2也对涂层的性能产生了不利影响,主要是因为ZrO2的存在会导致涂层中颗粒分布不均匀加剧,弱化弥散强化的作用。所以当ZrC较少时,涂层的性能并未得到较好的提升,但是当涂层中ZrC含量增加到5wt.%时,涂层中析出了较多的强化相ZrC0.7能够有效的提高材料的性能,该涂层的最大硬度为651±15 HV0.1,摩擦系数为0.161,相较于不含ZrC的涂层均有较大的提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号