共查询到17条相似文献,搜索用时 62 毫秒
1.
目的 考察环氧/聚氨酯(EP/PU)互穿网络复合材料在宽温域环境中的摩擦学性能,以及氧化石墨烯(GO)的添加对其摩擦学性能的影响。方法 制备EP、EP/GO、EP/PU、EP/PU/GO等4种材料,其中EP和PU的质量配比为3︰1,GO的质量分数为1.0%。分别研究4种材料的热力学性能,并采用高低温摩擦试验机对比研究常温和–100、–50、50、100 ℃下GO对EP/PU互穿网络材料摩擦磨损的影响。结果 热力学性能结果表明,PU的加入降低了起始分解温度,而加入GO,热分解起始温度有所提升,EP的拉伸强度最高约为90 MPa。室温条件下,200 r/min时,样品的摩擦因数和磨损率要优于400、500 r/min,其中,EP/PU/GO在200 r/min时的摩擦因数最低,为0.03。同样地,在–50、50、100 ℃时,相对于EP、EP/GO和EP/PU,EP/PU/GO也表现出优异的润滑性和耐磨性。SEM及XPS结果表明,摩擦氧化和螯合反应促进了转移膜的生长,形成了均匀结构的转移膜,可避免摩擦副的直接接触,有利于润滑作用。结论 添加GO可以有效改善材料的力学性能,提高EP/PU的摩擦学性能。 相似文献
2.
目的研究MoS_2和石墨填充对自润滑纤维织物复合材料摩擦学性能的影响。方法采用玄武三号栓-盘式摩擦磨损实验机,研究了石墨和MoS_2填充PTFE/棉纤纤维织物在不同载荷条件下的摩擦磨损性能,并采用扫描电镜观察了纤维织物复合材料的磨损表面和微观结构。结果在较低载荷下,填充5%MoS_2可以更有效地降低PTFE/棉纤纤维织物复合材料的磨损率;在较高载荷下,填充10%石墨可以更有效地降低PTFE/棉纤纤维织物复合材料的磨损率。载荷为219.52 N时,5%MoS_2填充PTFE/棉纤纤维织物复合材料的磨损率由未填充的1.28×10~(-14) m~3/(N·m)降低到0.61×10~(-14) m~3/(N·m),降低了50%;10%石墨填充PTFE/棉纤纤维织物复合材料的磨损率由1.28×10~(-14) m~3/(N·m)降低到0.91×10~(-14) m~3/(N·m),降低了28%。结论石墨和MoS_2填充在摩擦过程中减轻了磨粒的嵌入和切削作用,阻碍了复合材料的磨损,提高了PTFE/棉纤纤维织物复合材料的耐磨性能。 相似文献
3.
采用放电等离子烧结技术制备了Ni-Mo-Y-Gr(石墨烯)自润滑复合材料,通过光学显微镜、扫描电镜、X射线衍射、拉曼及高温摩擦实验机对复合材料的微观组织、成分、力学性能及摩擦磨损性能进行了研究。结果表明:Ni-Mo-Y-Gr复合材料的组织均匀致密,随着石墨烯含量的增加,复合材料的密度、硬度及屈服强度呈下降趋势,实际密度大于计算理论密度,即复合材料制备过程中发生了冶金熔合与固溶;Ni-Mo-Y-Gr复合材料在室温至600℃范围内具有较低的摩擦系数及磨损率,表明其具有较好的摩擦学性能;在室温、200和400℃时石墨烯起到了良好的润滑作用,在600℃时的主要润滑相为石墨烯、NiO、MoO2、MoO3和NiMoO4;在800℃时形成NiMoO4及镍钼的氧化物,难以形成完整、有效的润滑层,从而使复合材料的摩擦学性能有所下降。 相似文献
4.
纤维织物增强钢背复合材料因具备优异的力学与摩擦学性能在航空航海等领域备受关注,在无油或少油工况下具有较好的应用前景。使用改性处理的超高分子量聚乙烯(Ultra-high molecular weight polyethylene,UHMWPE)纤维织物作为增强材料,利用环氧树脂热压在不锈钢环上制备UHMWPE纤维织物增强钢背复合材料,研究其与45钢盘在环-环端面干摩擦状态下的摩擦学特性,考察纤维织物层数与摩擦转速对材料摩擦学性能的影响,对磨损前后复合材料厚度及45钢质量进行测取,利用表面轮廓仪与扫描电子显微镜对复合材料及对偶件磨损面进行观察与分析。结果表明,三种织物结构均能改善不锈钢的摩擦磨损特性,其中一层织物结构所表现的综合摩擦特性最好,在试验工况下摩擦因数与磨损率平均降低了77.7%与67.2%,在试验工况下主要发生磨粒磨损;二层与三层织物由于具备下层织物的支撑,故在较高转速下能保持材料自身良好的摩擦学特性,二层织物在试验工况下摩擦因数与磨损率平均降低了71.5%与65.7%,三层织物则为73.1%与60.3%,由于摩擦热量的积聚同时伴有树脂碎屑与破碎纤维的加入,其在高速下主要经历黏着磨损与疲劳磨损。试验表明,织物结构于干摩擦工况下表现出较优的摩擦特性与可靠性,能较好地胜任无油或少油作业。 相似文献
5.
利用RFT-Ⅲ型往复摩擦磨损试验机分别在45#钢和2024Al基底表面制备了一系列bronze/PTFE复合材料转移膜,利用JSL-5600LV型扫描电子显微镜和DFPM静动摩擦因数精密测定仪分别对整体材料的磨损表面、转移膜形貌及其摩擦学性能进行了评价.结果表明,随填料含量的增加复合材料的磨损率降低,其相应转移膜的均匀性和耐磨性也提高.bronze/PTFE复合材料与其转移膜间存在良好的对应关系,即材料的磨损率越低其转移膜的耐磨性越好,且这种对应关系不受基底材料变化的影响. 相似文献
6.
目的为石墨增强聚酰亚胺复合材料在海水环境下的摩擦学应用提供实验依据。方法利用SST-ST销/盘摩擦试验机,研究了质量分数为15%石墨增强聚酰亚胺复合材料与17-4PH不锈钢组成的摩擦副在海水介质中的摩擦学性能,并与干摩擦和纯水润滑条件下的摩擦学性能进行比较。结果聚酰亚胺复合材料在干摩擦下的摩擦系数和磨损体积最大,分别为0.134、1.930 mm~3。干摩擦条件下,聚酰亚胺复合材料的磨损表面存在较深的犁沟,在犁沟周围出现了材料塑性流动及粘着剥落现象,对偶件表面有聚酰亚胺复合材料转移。磨损机理主要表现为磨粒磨损、材料塑性变形以及粘着和剥落。在纯水润滑下,聚酰亚胺复合材料表面存在较多材料粘着撕裂现象,同时存在宽浅不一的犁沟,磨损机理主要为粘着磨损和磨粒磨损。在海水润滑下,复合材料的摩擦系数和磨损体积最小,分别为0.086、1.235 mm~3,材料磨损表面十分光滑,只有沿运动方向存在少量轻微犁沟,磨损机理主要表现为磨粒磨损。结论石墨增强聚酰亚胺复合材料在海水中的摩擦学性能优于干摩擦和纯水环境下的摩擦学性能。 相似文献
7.
选用新一代国产T800级碳纤维增强耐高温聚酰亚胺树脂预浸料,通过热压罐工艺制备聚酰亚胺复合材料。采用酸性盐雾、湿热环境对复合材料进行老化处理,研究复合材料的典型力学性能变化;另外,采用蒸馏水、航空燃油、航空润滑油、人工海水4种液体环境对复合材料进行常温1000 h浸泡处理,研究浸泡前后室温、280℃下复合材料力学性能的变化。结果表明:酸性盐雾处理对层间剪切性能影响明显,达13.4%,对其他力学性能影响均在5%以内;湿热处理未对力学性能造成明显损伤;4种液体环境浸泡处理后,蒸馏水、人工海水浸泡对常温层间剪切性能造成轻微损伤,性能下降约7%,高温面内剪切性能损伤不明显;常温层间剪切性能损伤较小,均在5%以内,高温层间剪切性能损伤增加,蒸馏水、人工海水浸泡后的损伤达到10%;常温开孔压缩性能损伤较小,在3%以内,高温开孔压缩性能损伤增加,蒸馏水、航空燃油、人工海水浸泡后的损伤超过10%。 相似文献
8.
为研究生理盐水润滑条件下碳酸钙晶须含量、载荷大小、滑动速度因素对PEEK/CaCO3复合材料摩擦学性能的影响规律,并考察复合材料的摩擦学稳定性,在自制改性偶联剂处理晶须表面的基础上制备了PEEK/CaCO3复合材料,利用MMW1A立式万能摩擦磨损试验机对复合材料的摩擦学性能进行测试,用扫描电子显微镜(SEM)对磨损表面形貌进行扫描分析表征。结果表明,晶须含量对复合材料摩擦学性能影响明显,在0.9%的生理盐水润滑条件下PEEK/CaCO3复合材料随着晶须含量的增加,摩擦因数及比磨损率均呈现先减小后增大现象;当晶须质量分数为15%左右时,复合材料的摩擦因数达到最低值,同时比磨损量相对最低,复合材料与摩擦副的磨合过程相对平稳,具有较好的摩擦学性能,表现为粘着腐蚀磨损特征。外加载荷、滑动速度增大,材料的摩擦因数增大,比磨损率增加。 相似文献
9.
10.
上浆剂对国产碳纤维/聚酰亚胺复合材料界面性能的影响 总被引:3,自引:0,他引:3
采用2种高温型上浆剂(溶液型和乳液型)对国产CCF300(表面已去浆)碳纤维进行上浆处理。通过扫描电子显微镜、X射线光电子能谱和接触角测试等手段,研究上浆剂对碳纤维表面性能的影响。通过对层间剪切强度(ILSS)的测试,研究上浆剂对碳纤维增强聚酰亚胺复合材料界面性能的影响。结果表明:2种上浆剂均能在碳纤维表面引入大量含氧官能团,增加碳纤维的表面能,并改善碳纤维与树脂间的浸润性;溶液型上浆剂使复合材料的ILSS提高了17%,乳液型上浆剂使复合材料的ILSS提高了12%,在高温下溶液型上浆剂表现出更好的耐热性能。 相似文献
11.
12.
针对航空发动机主轴轴承服役工况恶劣和类石墨碳基薄膜在高温环境下的性能研究不足等问题,采用磁控溅射技术在不同轴承钢基体(M50 钢、M50NiL 钢和 W9Cr4V2Mo 钢)上沉积 Ti-GLC 薄膜,探究在不同温度下的摩擦学性能。采用 SEM、 Raman 分析薄膜的微观结构,采用纳米压痕仪、划痕仪等测试其力学性能,利用 MFT-5000 型多功能摩擦磨损试验机测试所镀薄膜在不同温度下(室温、200 ℃、250 ℃和 300 ℃)的摩擦学性能。结果表明:在三种不同轴承钢基体沉积的 Ti-GLC 薄膜,其硬度和弹性模量变化不大,结合力从大到小依次为 M50>M50NiL>W9Cr4V2Mo。随着温度的升高,三种钢基体沉积 Ti-GLC 薄膜的摩擦因数均逐渐增大,而磨损率则先减小后增大,且表现出不同的磨损形式。三种轴承钢基体沉积 Ti-GLC 薄膜的最佳工作温度区间为室温~200 ℃,M50 钢基体所镀薄膜具有更好的力学性能和摩擦学性能,其结合力达到 80 N 以上, 300 ℃时的平均摩擦因数为 0.125,磨损率仅为 3.05×10?17 m3 /(N·m)。研究成果为类石墨碳基薄膜在高温环境下的实际应用奠定了理论基础。 相似文献
13.
目的 探究TiB2溅射电流(即TiB2含量)对WS2/TiB2复合薄膜在宽温域(25~500 ℃)下摩擦学性能的影响。方法 采用非平衡磁控溅射技术制备WS2/TiB2复合薄膜。通过场发射扫描电子显微镜(FESEM)、高分辨率透射电子显微镜(HRTEM)观察薄膜的形貌及结构;通过X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)表征薄膜结构;通过纳米压痕仪(Anton Paar,NHT2)评价薄膜的机械性能;利用高温球盘摩擦磨损试验机(THT01,03591)测试薄膜的摩擦学性能;采用光学显微镜(Olympus,STM6)、三维轮廓仪(Micro XAM–800)观察磨痕及磨斑形貌,通过HRTEM分析磨痕和磨斑的结构。结果 TiB2掺杂使WS2薄膜由高度结晶态向非晶态转变,增大了薄膜的致密度并提高了其机械性能。随着TiB2溅射电流的增大,复合薄膜的摩擦因数和磨损率呈先下降后上升的趋势。随着试验温度的升高,复合薄膜的摩擦因数先降低后升高,但磨损率一直逐渐升高。TiB2溅射电流为1.5 A时,制备的复合薄膜在宽温域(25~500 ℃)具有较低的摩擦因数和磨损率。300 ℃条件下,TiB2溅射电流为1.5 A时制备的复合薄膜在摩擦剪切力作用下重新定向形成了TiB2(101)晶体取向和平行于滑动方向的WS2(002)晶体取向,并在高环境温度和摩擦热作用下氧化形成了润滑相TiO2(001)晶体结构。结论 TiB2溅射电流为1.5 A时制备的复合薄膜具有优异的宽温域摩擦学性能。薄膜致密的非晶结构、高的硬度和弹性模量,以及在摩擦剪切力和高温氧化作用下重新结晶取向是低摩擦磨损的关键。 相似文献
14.
目的 研究微织构纳米固体润滑剂及碳纳米管(CNTs)添加剂对微织构表面高温润滑性能的影响.方法 采用YLP-HP-1-100-100-100型光纤激光器在Cr4M04V高温轴承钢表面进行织构化处理,并填充二硫化钼(MoS2)-聚酰亚胺(PI)和不同碳纳米管添加含量的MoS2-PI-CNTs复合固体润滑剂.在环-盘接触的MMU-10G高温摩擦磨损试验机上进行了环境温度从室温到400℃的滑动摩擦性能试验.结果 填充含纳米MoS2的复合固体润滑剂的微织构表面的摩擦系数比填充含相同含量微米MoS2的低35%左右.微织构纳米MoS2-PI自润滑表面摩擦系数随碳纳米管含量的增加先减小后增大,当碳纳米管质量分数为6%时,其摩擦系数最小,且比无碳纳米管的低37%左右.在MoS2-PI纳米复合润滑剂中添加6%碳纳米管后,MoS2-PI-CNTs纳米复合润滑剂具有更高的使用温度和更低的摩擦系数.结论 纳米MoS2的润滑效果优于微米MoS2,碳纳米管有利于提高MoS2-PI复合固体润滑剂的耐热性能和润滑减摩性能. 相似文献
15.
目的探究Ti含量对MoS2-Ti复合薄膜高温摩擦学性能的影响,制备高温摩擦性能良好的MoS2-Ti复合薄膜。方法采用射频和直流双靶共溅射技术沉积了不同Ti含量的MoS2-Ti复合薄膜,研究了Ti含量对MoS2-Ti薄膜微观结构和力学性能的影响,进一步探究了MoS2-Ti复合薄膜在大气环境下的高温摩擦学性能。采用能谱仪(EDS)、X射线衍射仪(XRD)和扫描电子显微镜(SEM),对薄膜的成分、晶相结构及微观形貌进行分析。利用显微维氏硬度计测试薄膜的力学性能,通过UMT-TriboLab摩擦磨损试验机评价薄膜的摩擦磨损性能。此外,采用SEM、拉曼光谱仪(Raman)和X射线光电子能谱仪(XPS),对薄膜的磨痕形貌及对偶球转移膜的成分进行分析。结果Ti掺杂促进了MoS2薄膜以(002)晶面择优取向生长,且提高了薄膜的致密度,薄膜硬度从70HV提升到350HV。MoS2-Ti复合薄膜在高温环境下的摩擦性能,随Ti含量的增加呈先上升后下降的趋势,其中Ti原子数分数为6.81%的MoS2-Ti复合薄膜具有较低的摩擦因数和磨损率。通过对转移膜的成分进行分析,发现处于300℃高温环境下,Ti原子数分数为13.51%的MoS2-Ti复合薄膜由于在摩擦过程中生成的氧化物较多,其耐磨性能开始下降。结论Ti含量对MoS2-Ti复合薄膜的高温摩擦学性能有明显的影响,掺杂适量Ti能显著提高MoS2薄膜在大气环境下的高温摩擦学性能。 相似文献
16.
目的 探究FHG97/WS2复合材料力学和摩擦学性能。方法 采用放电等离子烧结技术制备不同WS2含量的复合材料,通过硬度仪和万能试验机评估材料的力学性能。采用往复式摩擦试验机和白光干涉仪测试25~600℃的摩擦学性能。利用XRD、SEM、EDS和Raman分析材料的物相、显微组织和磨损表面的形貌及元素成分。结果 在复合材料制备烧结过程中,WS2与FHG97发生了固相原位反应,生成了CrxSy和M6C相。新生相提高了复合材料的微观硬度和抗压强度,降低了抗弯强度。摩擦磨损测试结果表明,复合材料的摩擦系数在25~600℃都随温度的升高而降低,添加WS2对摩擦系数降低有积极的作用。磨损率在25~400℃先降低,600℃有所上升。CrxSy和M6C协同作用使复合材料在25~200℃改善了摩擦磨损性能。400℃时,磨损表面形成的NiO、Cr2O3 相似文献
17.
目的 合理选用摩擦偶件材料,以减缓Ni3Al基涂层宽温域内的摩擦磨损.方法 分别以WC-Co和316L为摩擦偶件,研究25~800℃内其对Ni3Al基涂层润滑和磨损机理的影响.采用高温硬度仪测试摩擦偶件在不同温度时的硬度,采用附带能谱仪的扫描电子显微镜观察磨损表面、磨斑和磨屑的形貌并测试成分,采用拉曼散射仪测试磨损表面和磨斑的成分.结果 在25~800℃,随温度的升高,两种摩擦副的摩擦系数具有一致的变化规律.与WC-Co对摩时,涂层在各温度下均具有低磨损率,且随温度升高,磨损率呈下降趋势.在25~200℃,与316L对摩时,涂层主要表现为粘着磨损和磨粒磨损,而与WC-Co对摩时,涂层在高接触应力下发生塑性变形,抑制Ag润滑相析出和涂层剥落,使其较前者具有高摩擦系数和低磨损率.在400℃,与WC-Co对摩时,高接触应力下产生的摩擦热促使涂层发生轻微的氧化,形成NiO和NiCr2O4,使其减摩性能优于Ni3Al/316L摩擦副.在600~800℃,与316L对摩时,涂层由严重的粘着磨损转变为氧化磨损;而与WC-Co对摩时,涂层由氧化磨损和剥层磨损转变为氧化磨损.此外,800℃时,Ni3Al/316L摩擦副的摩擦磨损发生在光滑润滑膜与粗糙转移膜之间,而Ni3Al/WC-Co摩擦副发生在光滑的润滑膜与转移膜之间.结论 在25~800℃,涂层与316L和WC-Co对摩时均具有良好的减摩性能,且与WC-Co对摩时具有更优的耐磨性能. 相似文献