首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cui  Jiabin  Ma  Pin  Li  Weidan  Jiang  Rui  Zheng  Lirong  Lin  Yuan  Guo  Chang  Yin  Xiong  Wang  Leyu 《Nano Research》2021,14(12):4714-4718

Hierarchical Pt-alloys enriched with active sites are highly desirable for efficient catalysis, but their syntheses generally need time-consuming and elaborate annealing treatment at high temperature. We herein report a surface active-site engineering strategy for constructing the hierarchical PtNi nanocatalysts with an atomic Pt-skin layer (PtNi@Pt-SL) towards efficient triiodide reduction reaction (TRR) via an acid-dealloying approach. The facile acid-dealloying process promotes the formation of surface Pt active sites on the hierarchical Pt-alloys, and thus results in good catalytic performance towards TRR. Theoretical calculation reveals that the enhanced catalytic property stems from the moderate energy barriers for iodide atoms on the surface Pt active-sites. The surface active-site engineering strategy paves a new way for the design of active and durable electrocatalysts.

  相似文献   

2.
Sun  Danping  Tan  Zhi  Tian  Xuzheng  Ke  Fei  Wu  Yale  Zhang  Jin 《Nano Research》2021,14(12):4370-4385

The development of rechargeable lithium-ion batteries (LIBs) is being driven by the ever-increasing demand for high energy density and excellent rate performance. Charge transfer kinetics and polarization theory, considered as basic principles for charge regulation in the LIBs, indicate that the rapid transfer of both electrons and ions is vital to the electrochemical reaction process. Graphene, a promising candidate for charge regulation in high-performance LIBs, has received extensive investigations due to its excellent carrier mobility, large specific surface area and structure tunability, etc. Recent progresses on the structural design and interfacial modification of graphene to regulate the charge transport in LIBs have been summarized. Besides, the structure-performance relationships between the structure of the graphene and its dedicated applications for LIBs have also been clarified in detail. Taking graphene as a typical example to explore the mechanism of charge regulation will outline ways to further understand and improve carbon-based nanomaterials towards the next generation of electrochemical energy storage devices.

  相似文献   

3.
Jiang  Haoyu  Qi  Jizhen  Wu  Dongchang  Lu  Wei  Qian  Jiahui  Qu  Haifeng  Zhang  Yixiao  Liu  Pei  Liu  Xi  Chen  Liwei 《Nano Research》2021,14(12):4802-4807

Ferroelectric barium titanate nanoparticles (BTO NPs) may play critical roles in miniaturized passive electronic devices such as multi-layered ceramic capacitors. While increasing experimental and theoretical understandings on the structure of BTO and doped BTO have been developed over the past decade, the majority of the investigation was carried out in thin-film materials; therefore, the doping effect on nanoparticles remains unclear. Especially, doping-induced local composition and structure fluctuation across single nanoparticles have yet to be unveiled. In this work, we use electron microscopy-based techniques including high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), integrated differential phase contrast (iDPC)-STEM, and energy dispersive X-ray spectroscopy (EDX) mapping to reveal atomically resolved chemical and crystal structure of BTO and strontium doped BTO nanoparticles. Powder X-ray diffraction (PXRD) results indicate that the increasing strontium doping causes a structural transition from tetragonal to cubic phase, but the microscopic data validate substantial compositional and microstructural inhomogeneities in strontium doped BTO nanoparticles. Our work provides new insights into the structure of doped BTO NPs and will facilitate the materials design for next-generation high-density nano-dielectric devices.

  相似文献   

4.
Wang  Xuemin  Liu  Ming  Zhang  Hang  Yan  Sihao  Zhang  Cui  Liu  Shuangxi 《Nano Research》2021,14(12):4569-4576

Despite the extensive application of porous nanostructures as oxygen electrocatalysts, it is challenging to synthesize single-metal state materials with porous structures, especially the ultrasmall ones due to the uniform diffusion of the same metal. Herein, we pioneer demonstrate a new size effect-based controllable synthesis strategy for the homogeneous Co nanokarstcaves assisted by Co-CN hybrids (CCHs). The preferential migration of cobalt atoms on the surface of small size zeolitic imidazolate framework (ZIF) with high surface energy during pyrolysis is the key factor for the formation of nanokarstcave structure. Furthermore, graphene can act as a diffusion barrier to prevent the agglomeration of nanoparticles in the synthesis process, which also plays an important role in the formation of porous nanostructures. In alkali media, CCHs achieve overpotential of 287 mV (@10 mA·cm−2) for oxygen evolution reaction (OER) and a half wave potential of 0.86 V (vs. RHE) for oxygen reduction reaction (ORR).

  相似文献   

5.
Acute kidney injury(AKI),has become the focus of increasing attention due to its high risk of death.The early diagnosis and treatment of AKI significantly reduce the risk of renal tissue damage and kidney dysfunction.However,the efficient early diagnosis and treatment approach for AKI remains a challenge.AKI screening via precise nanomaterial theranostics is a new alternative approach.This study summarizes the recent advances in functional nanomaterials in the early detection and treatment of AKI.The challenges and problems in the use of nanomaterials for AKI in clinical applications are also discussed.It is anticipated that highlighting these new advances will lay the foundation for further translational research on the promising application of nanomaterials for AKI.  相似文献   

6.
Gong  Lanqian  Yang  Huan  Wang  Hongming  Qi  Ruijuan  Wang  Junlei  Chen  Shenghua  You  Bo  Dong  Zehua  Liu  Hongfang  Xia  Bao Yu 《Nano Research》2021,14(12):4528-4533

Designing earth-abundant electrocatalysts with high performance towards water oxidation is highly decisive for the sustainable energy technologies. This study develops a facile natural corrosion approach to fabricate nickel-iron hydroxides for water oxidation. The resulted electrode demonstrates an outstanding activity and stability with an overpotential of 275 mV to deliver 10 mA·cm−2. Experimental and theoretical results suggest the corrosion-induced formation of hydroxides and their transformation to oxyhydroxides would account for this excellent performance. This work not only provides an interesting corrosion approach for the fabrication of excellent water oxidation electrode, but also bridges traditional corrosion engineering and novel materials fabrication, which would offer some insights in the innovative principles for nanomaterials and energy technologies.

  相似文献   

7.
While metal nanoparticles(NPs)have shown great promising applications as heterogeneous catalysts,their agglomeration caused by thermodynamic instability is detrimental to the catalytic performance.To tackle this hurdle,we successfully prepared a functional and stable porphyrinic metal-organic framework(MOF),PCN-224-RT,as a host for encapsulating metal nanoparticles by direct stirring at room temperature.As a result,Pt@PCN-224-RT composites with well-dispersed Pt NPs can be constructed by introducing pre-synthesized Pt NPs into the precursor solution of PCN-224-RT.Of note,the rapid and simple stirring method in this work is more in line with the requirements of environmental friendly and industrialization compared with traditional solvothermal methods.  相似文献   

8.
Ma  Lianbo  Lv  Yaohui  Wu  Junxiong  Xia  Chuan  Kang  Qi  Zhang  Yizhou  Liang  Hanfeng  Jin  Zhong 《Nano Research》2021,14(12):4442-4470

Potassium-ion batteries (PIBs) are appealing alternatives to conventional lithium-ion batteries (LIBs) because of their wide potential window, fast ionic conductivity in the electrolyte, and reduced cost. However, PIBs suffer from sluggish K+ reaction kinetics in electrode materials, large volume expansion of electroactive materials, and the unstable solid electrolyte interphase. Various strategies, especially in terms of electrode design, have been proposed to address these issues. In this review, the recent progress on advanced anode materials of PIBs is systematically discussed, ranging from the design principles, and nanoscale fabrication and engineering to the structure-performance relationship. Finally, the remaining limitations, potential solutions, and possible research directions for the development of PIBs towards practical applications are presented. This review will provide new insights into the lab development and real-world applications of PIBs.

  相似文献   

9.
Wu  Xiangshui  Tao  Qiqi  Li  Da  Wang  Qilang  Zhang  Xiaoyan  Jin  Huile  Li  Jun  Wang  Shun  Xu  Xiangfan 《Nano Research》2021,14(12):4725-4731

Tellurene, probably one of the most promising two-dimensional (2D) system in the thermoelectric materials, displays ultra-low thermal conductivity. However, a linear thickness-dependent thermal conductivity of unique tellurium nanoribbons in this study reveals that unprecedently low thermal conductivity can be achieved via well-defined nanostructures of low-dimensional tellurium instead of pursuing dimension-reduced 2D tellurene. For thinnest tellurium nanoribbon with thickness of 144 nm, the thermal conductivity is only ∼1.88 ± 0.22 W·m−1·K−1 at room temperature. It’s a dramatic decrease (45%), compared with the well-annealed high-purity bulk tellurium. To be more specific, an expected thermal conductivity of tellurium nanoribbons is even lower than that of 2D tellurene, as a result of strong phonon-surface scattering. We have faith in low-dimensional tellurium in which the thermoelectric performance could realize further breakthrough.

  相似文献   

10.
Lin  Lihong  Chen  Zhuo  Chen  Wenxing 《Nano Research》2021,14(12):4398-4416

The depletion of energy and increasing environmental pressure have become one of the main challenges in the world today. Synthetic high-efficiency catalysts bring hope for efficient conversion of energy and effective treatment of pollutants, especially, single-atom catalysts (SACs) are promising candidates. Herein, we comprehensively summarizes the atomic diffusion strategy, which is considered as an effective method to prepare a series of SACs. According to the different diffusion forms of the precursors, we review the synthesis pathways of SACs from three aspects: gas diffusion, solid diffusion and liquid diffusion. The gaseous diffusion method mainly discusses atomic layer deposition (ALD) and chemical vapor deposition (CVD), both of which carry out gas phase mass transfer at high temperatures. The solid-state diffusion method can be divided into nanoparticle transformation into single atoms and solid atom migration. Liquid diffusion mainly describes the electrochemical method and the molten salt method. We hope this review can trigger the rational design of SACs.

  相似文献   

11.
Yang  Zhengkun  Wang  Xiaolin  Zhu  Mengzhao  Leng  Xinyan  Chen  Wenxing  Wang  Wenyu  Xu  Qian  Yang  Li-Ming  Wu  Yuen 《Nano Research》2021,14(12):4512-4519

An efficient preparation and local coordination environment regulation of isolated single-atom sites catalysts (ISASC) for improved activity is still challenging. Herein, we develop a solid phase thermal diffusion strategy to synthesize Mn ISASC on highly uniform nitrogen-doped carbon nanotubes by employing MnO2 nanowires@ZIF-8 core-shell structure. Under high-temperature, the Mn species break free from core-MnO2 lattice, which will be trapped by carbon defects derived from shell-ZIF-8 carbonization, and immobilized within carbon substrate. Furthermore, the poly-dispersed Mn sites with two nitrogen-coordinated centers can be controllably renovated into four-nitrogen-coordinated Mn sites using NH3 treatment technology. Both experimental and computational investigations indicate that the symmetric coordinated Mn sites manifest outstanding oxygen reduction activity and superior stability in alkaline and acidic solutions. This work not only provides efficient way to regulate the coordination structure of ISASC to improve catalytic performance but also paves the way to reveal its significant promise for commercial application.

  相似文献   

12.
Mao  Xi  Li  Hao  Kim  Jinwoo  Deng  Shuai  Deng  Renhua  Kim  Bumjoon J.  Zhu  Jintao 《Nano Research》2021,14(12):4644-4649

A solvent annealing-induced structural reengineering approach is exploited to fabricate polymersomes from block copolymers that are hard to form vesicles through the traditional solution self-assembly route. More specifically, polystyrene-b-poly(4-vinyl pyridine) (PS-b-P4VP) particles with sphere-within-sphere structure (SS particles) are prepared by three-dimensional (3D) soft-confined assembly through emulsion-solvent evaporation, followed by 3D soft-confined solvent annealing upon the SS particles in aqueous dispersions for structural engineering. A water-miscible solvent (e.g., THF) is employed for annealing, which results in dramatic transitions of the assemblies, e.g., from SS particles to polymersomes. This approach works for PS-b-P4VP in a wide range of block ratios. Moreover, this method enables effective encapsulation/loading of cargoes such as fluorescent dyes and metal nanoparticles, which offers a new route to prepare polymersomes that could be applied for cargo release, diagnostic imaging, and nanoreactor, etc.

  相似文献   

13.
The precise control on the combination of multiple metal atoms in the structure of metal-organic frameworks(MOFs)endowed by reticular chemistry,allows the obtaining of materials with compositions that are programmed for achieving enhanced reactivity.The present work illustrates how through the transformation of MOFs with desired arrangements of metal cations,multi-metal spinel oxides with precise compositions can be obtained,and used as catalyst precursor for the reverse water-gas shift reaction.The differences in the spinel initial composition and structure,determined by neutron powder diffraction,influence the overall catalytic activity with changes in the process of in s itu formation of active,metal-oxide supported metal nanoparticles,which have been monitored and characterized with in situ X-ray diffraction and photoelectron spectroscopy studies.  相似文献   

14.
Zheng  Kaiyuan  Setyawati  Magdiel I.  Leong  David Tai  Xie  Jianping 《Nano Research》2021,14(4):1026-1033

Understanding the interaction of nanomaterials with biological systems has always been of high concern and interest. An emerging type of nanomaterials, ultrasmall metal nanoclusters (NCs, < 2 nm in size), are promising in this aspect due to their well-defined molecular formulae and structures, as well as unique physical and chemical properties that are distinctly different from their larger counterparts (metal nanoparticles). For example, metal NCs possess intrinsic strong luminescence, which can be used for real-time tracking of their interactions with biological systems. Herein, luminescent gold (Au) NCs were used as traceable antimicrobial agents to study their interactions with the bacteria and to further understand their underlining antimicrobial mechanism. It is shown for the first time that the Au NCs would first attach on the bacterial membrane, penetrate, and subsequently accumulate inside the bacteria. Thereafter, the internalized Au NCs would induce reactive oxygen species (ROS) generation and damage the bacterial membrane, resulting in the leakage of bacterial contents, which can finally kill the bacteria. Traceable Au NCs (or other metal NCs) provide a promising platform to study the antimicrobial mechanisms as well as other fundamentals on the interfacing of functional nanomaterials with the biological systems, further increasing their acceptance in various biomedical applications.

  相似文献   

15.
Optical manipulation of micro/nanoscale objects is of importance in life sciences,colloidal science,and nanotechnology.Optothermal tweezers exhibit superior manipulation capability at low optical intensity.However,our implicit understanding of the working mechanism has limited the further applications and innovations of optothermal tweezers.Herein,we present an atomistic view of opto-thermo-electro-mechanic coupling in optothermal tweezers,which enables us to rationally design the tweezers for optimum performance in targeted applications.Specifically,we have revealed that the non-uniform temperature distribution induces water polarization and charge separation,which creates the thermoelectric field dominating the optothermal trapping.We further design experiments to systematically verify our atomistic simulations.Guided by our new model,we develop new types of optothermal tweezers of high performance using low-concentrated electrolytes.Moreover,we demonstrate the use of new tweezers in opto-thermophoretic separation of colloidal particles of the same size based on the difference in their surface charge,which has been challenging for conventional optical tweezers.With the atomistic understanding that enables the performance optimization and function expansion,optothermal tweezers will further their impacts.  相似文献   

16.
Bai  Bingbing  Gu  Chaoyu  Lu  Xiaohui  Ge  Xingyu  Yang  Junling  Wang  Chenfei  Gu  Yongchun  Deng  Aidong  Guo  Yuehua  Feng  Xingmei  Gu  Zhifeng 《Nano Research》2021,14(12):4577-4583

Periodontitis is recognized as the major cause of tooth loss in adults, posing an adverse impact on systemic health. In periodontitis, excessive production of reactive oxygen species (ROS) at the inflamed site culminates in periodontal destruction. In this study, a novel ROS-responsive drug delivery system based on polydopamine (PDA) functionalized mesoporous silica nanoparticles was developed for delivering minocycline hydrochloride (MH) to treat periodontitis. The outer PDA layer and the inner MH of the nanoparticles acted as ROS scavengers and anti-inflammatory agents, respectively. Under the synergistic action of PDA and MH, macrophages were polarized from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype. The in vitro experiments provided convincing evidence that PDA could scavenge ROS effectively, and the expression of pro-inflammatory cytokines was attenuated and the secretion of anti-inflammatory cytokines was enhanced through M1 to M2 polarization of macrophages with the cooperation of MH. In addition, the results obtained from the periodontitis rat models demonstrated that the synergetic effect of PDA and MH prevented alveolar bone loss without causing any adverse effect. Taken together, the results from the present investigation provide a new strategy to remodel the inflammatory microenvironment by inducing the polarization of macrophages from M1 toward M2 state for the treatment of periodontitis.

  相似文献   

17.
Sheng  Jian  Zhu  Sheng  Jia  Guodong  Liu  Xu  Li  Yan 《Nano Research》2021,14(12):4541-4547

Bifunctional electrocatalysts with high activity toward both oxygen reduction and evolution reaction are highly desirable for rechargeable Zn-air batteries. Herein, a kind of carbon nanotube (CNT) supported single-site Fe-N-C catalyst was fabricated via pyrolyzing in-situ grown Fe-containing zeolitic imidazolate frameworks on CNTs. CNTs not only serve as the physical supports of the Fe-N-C active sites but also provide a conductive network to facilitate the fast electron and ion transfer. The as-synthesized catalysts exhibit a half-wave potential of 0.865 V for oxygen reduction reaction and a low overpotential of 0.442 V at 10 mA·cm−2 for oxygen evolution, which is 310 mV smaller than that of Fe-N-C without CNTs. The rechargeable Zn-air batteries fabricated with such hybrid catalysts display a high peak power density of 182 mW·cm−2 and an excellent cycling stability of over 1,000 h at 10 mA·cm−2, which outperforms commercial Pt-C and most of the reported catalysts. This facile strategy of combining single-site Metal-N-C with CNTs network is effective for preparing highly active bifunctional electrocatalysts.

  相似文献   

18.
Zhang  Feng  Song  Bo  Jiang  Lei 《Nano Research》2021,14(12):4367-4369

Biochemical reactions in vivo occur at the temperature usually lower than that in vitro, however the underlying mechanism still remains a challenge. Inspired by our recent studies of adenosine triphosphate (ATP) releasing photons to resonantly drive DNA replication in a quantum way, we propose a quantized chemical reaction driven by multiple mid-infrared (MIR) photons. The space confinement effect of enzymes on a reactant molecule increases the lifetime of excitation state of its bond vibration, providing a chance for the bond to resonantly absorb multiple photons. Although the energy of each MIR photon is significantly lower than that of chemical bond, the resonant absorption of multiple photons can break the appointed bond of confined molecules. Different from the traditional thermochemistry and photochemistry, the quantized chemical reactions could have a high energy efficiency and ultrahigh selectivity. In addition, we also suggest a quantum driving source for our quantum-confined superfluid reactions proposed previously. The quantized chemical reaction resonantly driven by multiple MIR photons holds great promise to develop novel approaches for the chemical engineering in future.

  相似文献   

19.
Core-shell hybrid nanomaterials have shown new properties and functions that are not attainable by their single counterparts.Nanoscale confinement effect by porous inorganic shells in the hybrid nanostructures plays an important role for chemical transformation of the core nanoparticles.However,metal-organic frameworks(MOFs)have been rarely applied for understanding mechanical insight into such nanoscale phenomena in confinement,although MOFs would provide a variety of properties for the confining environment than other inorganic shells such as silica and zeolite.Here,we examine chemical transformation of a gold nanorod core enclosed by a zeolitic imidazolate framework(ZIF)through chemical etching and regrowth,followed by quantitative analysis in the core dimension and curvature.We find the nanorod core shows template-effective behavior in its morphological transformation.In the etching event,the nanorod core is spherically carved from its tips.The regrowth on the spherically etched core inside the ZIF gives rise toformation of a raspberry-like branched nanostructure in contrast to the growth of an octahedral shape in bulk condition.We attribute the shell-directed regrowth to void space generated at the interfaces between the etched core and the ZIF shell,intercrystalline gaps in mult-domain ZIF shells,and local structural deformation from the acidic reaction conditions.  相似文献   

20.
Zhao  Yi  Chen  Long  Wang  Yanan  Song  Xinyu  Li  Keyang  Yan  Xuefeng  Yu  Liangmin  He  Zhiyu 《Nano Research》2021,14(12):4417-4441

The dramatic increase of microbial resistances against conventional available antibiotics is a huge challenge to the effective treatment of infectious disease and thus becoming a daunting global threat of major concern, which necessitates the development of innovative therapeutics. Nanomaterial-based antimicrobial strategies have emerged as novel and promising tools to combat lethal bacteria and recalcitrant biofilm, featuring the abilities to evade existing drug resistance-related mechanisms. In this review, recent advances in “state-of-the-art” nanosystems which acting either as inherent therapeutics or nanocarriers for the precise delivery of antibiotics, are comprehensively summarized. Those nanosystems can effectively accumulate at the infectious sites, achieve multifunctional synergistic antibacterial efficacy, and provide controlled release of antibiotics in response to endogenous or exogenous stimulus (e.g., low pH, enzymes, or illumination). Especially, the nanoplatform that integrated with photothermal/photodynamic therapy (PTT/PDT) can enhance the bacterial destruction and biofilm penetration or ablation. In addition, nanoparticle-based approaches with enzymatically promoting bacterial killing, anti-virulence, and other mechanisms were also involved. Overall, this review provides crucial insights into the recent progress and remaining limitations of various antimicrobial nanotherapeutic strategies, and enlightens the further developments in this field simultaneously, which eventually benefiting public health.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号