首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the P25 titanium dioxide (TiO2) nanoparticle (NP) thin film was coated on the fluorine-doped tin oxide (FTO) glass substrate by a doctor blade method. The film then compressed mechanically to be the photoanode of dye-sensitized solar cells (DSSCs). Various compression pressures on TiO2 NP film were tested to optimize the performance of DSSCs. The mechanical compression reduces TiO2 inter-particle distance improving the electron transport efficiency. The UV–vis spectrophotometer and electrochemical impedance spectroscopy (EIS) were employed to quantify the light-harvesting efficiency and the charge transport impedance at various interfaces in DSSC, respectively. The incident photon-to-current conversion efficiency was also monitored. The results show that when the DSSC fabricated by the TiO2 NP thin film compressed at pressure of 279 kg/cm2, the minimum resistance of 9.38 Ω at dye/TiO2 NP/electrolyte interfaces, the maximum short-circuit photocurrent density of 15.11 mA/cm2, and the photoelectric conversion efficiency of 5.94% were observed. Compared to the DSSC fabricated by the non-compression of TiO2 NP thin film, the overall conversion efficiency is improved over 19.5%. The study proves that under suitable compression pressure the performance of DSSC can be optimized.  相似文献   

2.
This study investigates the extent to which the TiO2/graphene/TiO2 sandwich structure improves the performance of dye-sensitized solar cells (DSSCs) over that of DSSCs with the traditional structure. Studies have demonstrated that the TiO2/graphene/TiO2 sandwich structure effectively enhances the open circuit voltage (Voc), short-circuit current density (Jsc), and photoelectrical conversion efficiency (η) of DSSCs. The enhanced performance of DSSCs with the sandwich structure can be attributed to an increase in electron transport efficiency and in the absorption of light in the visible range. The DSSC with the sandwich structure in this study exhibited a Voc of 0.6 V, a high Jsc of 11.22 mA cm-2, a fill factor (FF) of 0.58, and a calculated η of 3.93%, which is 60% higher than that of a DSSC with the traditional structure.  相似文献   

3.
Here, we report a novel double‐layer structure photoanode with TiO2 nanotube (TNT) layer and TiO2 nanoparticle (TP) layer via a two‐step method of electrochemical anodization and screen printing for dye‐sensitized solar cells (DSSCs). The results indicate that DSSCs with this double‐layer structure have significant advantages of large surface area, long electron lifetime, superior electron recombination restraint characteristics, and high light scattering. The layer thickness of nanotubes and nanoparticles is also investigated and finally an optimized double‐layer structure with excellent performance is prepared. With such a double‐layer structure photoanode, DSSC with a relative high conversion efficiency of 6.43% and a short‐circuit photocurrent density of 16.40 mA·cm?2 is obtained.  相似文献   

4.
Nano-branched rutile TiO2 nanorod arrays were grown on F:SnO2 conductive glass (FTO) by a facile, two-step wet chemical synthesis process at low temperature. The length of the nanobranches was tailored by controlling the growth time, after which CdS quantum dots were deposited on the nano-branched TiO2 arrays using the successive ionic layer adsorption and reaction method to make a photoanode for quantum dot-sensitized solar cells (QDSCs). The photovoltaic properties of the CdS-sensitized nano-branched TiO2 solar cells were studied systematically. A short-circuit current intensity of approximately 7 mA/cm2 and a light-to-electricity conversion efficiency of 0.95% were recorded for cells based on optimized nano-branched TiO2 arrays, indicating an increase of 138% compared to those based on unbranched TiO2 nanorod arrays. The improved performance is attributed to a markedly enlarged surface area provided by the nanobranches and better electron conductivity in the one-dimensional, well-aligned TiO2 nanorod trunks.  相似文献   

5.
We have studied the performance of dye-sensitized solar cells by employing natural dye “anthocyanins” extracted from the tomato slurry as a sensitizer for the TiO2/CuO photoanode. The extracts were anchored on TiO2/CuO films deposited on an ITO substrate which was used as a photoanode. The dye adsorbed TiO2/CuO films electrode, the copper plate as a counter electrode, and iodolyte as an electrolyte were assembled into DSSCs. The conversion efficiency of the DSSCs was found to be 2.96% with a VOC of 0.615 V, JSC of 6.6 mA/cm2, and an FF of 0.73. This work highlights the use of contribution of the tomato slurry as a natural sensitizer to enhance the efficiency of DSSCs.  相似文献   

6.
Narrow bandgap PbS nanoparticles, which may expand the light absorption range to the near-infrared region, were deposited on TiO2 nanorod arrays by successive ionic layer adsorption and reaction method to make a photoanode for quantum dot-sensitized solar cells (QDSCs). The thicknesses of PbS nanoparticles were optimized to enhance the photovoltaic performance of PbS QDSCs. A uniform CdS layer was directly coated on previously grown PbS-TiO2 photoanode to protect the PbS from the chemical attack of polysulfide electrolytes. A remarkable short-circuit photocurrent density (approximately 10.4 mA/cm2) for PbS/CdS co-sensitized solar cell was recorded while the photocurrent density of only PbS-sensitized solar cells was lower than 3 mA/cm2. The power conversion efficiency of the PbS/CdS co-sensitized solar cell reached 1.3%, which was beyond the arithmetic addition of the efficiencies of single constituents (PbS and CdS). These results indicate that the synergistic combination of PbS with CdS may provide a stable and effective sensitizer for practical solar cell applications.  相似文献   

7.
A low temperature (<150 °C) fabrication method for preparation of TiO2 porous films with high efficiency in dye-sensitized solar cells (DSSCs) has been developed. The Ti(IV) tetraisopropoxide (TTIP) was added to the paste of TiO2 nanoparticles to interconnect the TiO2 particles. The electrochemical impedance spectroscopy (EIS) technique was employed to quantify the charge transport resistance at the TiO2/dye/electrolyte interface (Rct2) and electron lifetime in the TiO2 film (τe) under different molar ratios of TTIP/TiO2 and also at various TiO2 thicknesses. It was found that the Rct2 decreased as the molar ratio increased from 0.02 to 0.08, however, it increased at a molar ratio of 0.2 due to the reduction in surface area for dye adsorption. In addition, the characteristic frequency peak shifted to lower frequency at a molar ratio of 0.08, indicating the longer electron lifetime. As for the thickness effect, TiO2 film with a thickness around 17 μm achieved the best cell efficiency. EIS study also confirmed that, under illumination, the smallest Rct2 was associated with a TiO2 thickness of 17 μm, with the Rct2 increased as the thickness of TiO2 film increased. In the Bode plots, the characteristic frequency peaks shifted to higher frequency when the thickness of TiO2 increased from 17.2 to 48.2 μm, indicating the electron recombination increases as the thickness of the TiO2 electrode increases.Finally, to make better use of longer wavelength light, 30 wt% of larger TiO2 particle (300 nm) was mixed with P25 TiO2 as light scattering particles. It effectively increased the short-circuit current density and cell conversion efficiency from 7.44 to 8.80 mA cm−2 and 3.75 to 4.20%, respectively.  相似文献   

8.
For high solar conversion efficiency of dye-sensitized solar cells [DSSCs], TiO2 nanofiber [TN] and Ag-doped TiO2 nanofiber [ATN] have been extended to be included in TiO2 films to increase the amount of dye loading for a higher short-circuit current. The ATN was used on affected DSSCs to increase the open circuit voltage. This process had enhanced the exit in dye molecules which were rapidly split into electrons, and the DSSCs with ATN stop the recombination of the electronic process. The conversion efficiency of TiO2 photoelectrode-based DSSCs was 4.74%; it was increased to 6.13% after adding 5 wt.% ATN into TiO2 films. The electron lifetime of DSSCs with ATN increased from 0.29 to 0.34 s and that electron recombination was reduced.  相似文献   

9.
In this work, we investigate the controlled fabrication of Sn-doped TiO2 nanorods (Sn/TiO2 NRs) for photoelectrochemical water splitting. Sn is incorporated into the rutile TiO2 nanorods with Sn/Ti molar ratios ranging from 0% to 3% by a simple solvothermal synthesis method. The obtained Sn/TiO2 NRs are single crystalline with a rutile structure. The concentration of Sn in the final nanorods can be well controlled by adjusting the molar ratio of the precursors. Photoelectrochemical experiments are conducted to explore the photocatalytic activity of Sn/TiO2 NRs with different doping levels. Under the illumination of solar simulator with the light intensity of 100 mW/cm2, our measurements reveal that the photocurrent increases with increasing doping level and reaches the maximum value of 1.01 mA/cm2 at −0.4 V versus Ag/AgCl, which corresponds to up to about 50% enhancement compared with the pristine TiO2 NRs. The Mott-Schottky plots indicate that incorporation of Sn into TiO2 nanorod can significantly increase the charge carrier density, leading to enhanced conductivity of the nanorod. Furthermore, we demonstrate that Sn/TiO2 NRs can be a promising candidate for photoanode in photoelectrochemical water splitting because of their excellent chemical stability.  相似文献   

10.
Dye-sensitized solar cells (DSSCs) were fabricated by using well-crystallized ZnO nanocombs directly grown onto the fluorine-doped tin oxide (FTO) via noncatalytic thermal evaporation process. The thin films of as-grown ZnO nanocombs were used as photoanode materials to fabricate the DSSCs, which exhibited an overall light to electricity conversion efficiency of 0.68% with a fill factor of 34%, short-circuit current of 3.14 mA/cm2, and open-circuit voltage of 0.671 V. To the best of our knowledge, this is first report in which thin film of ZnO nanocombs was used as photoanode materials to fabricate the DSSCs.  相似文献   

11.
High performance is expected in dye-sensitized solar cells (DSSCs) that utilize one-dimensional (1-D) TiO2 nanostructures owing to the effective electron transport. However, due to the low dye adsorption, mainly because of their smooth surfaces, 1-D TiO2 DSSCs show relatively lower efficiencies than nanoparticle-based ones. Herein, we demonstrate a very simple approach using thick TiO2 electrospun nanofiber films as photoanodes to obtain high conversion efficiency. To improve the performance of the DSCCs, anatase-rutile mixed-phase TiO2 nanofibers are achieved by increasing sintering temperature above 500°C, and very thin ZnO films are deposited by atomic layer deposition (ALD) method as blocking layers. With approximately 40-μm-thick mixed-phase (approximately 15.6?wt.% rutile) TiO2 nanofiber as photoanode and 15-nm-thick compact ZnO film as a blocking layer in DSSC, the photoelectric conversion efficiency and short-circuit current are measured as 8.01% and 17.3?mA?cm?2, respectively. Intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy measurements reveal that extremely large electron diffusion length is the key point to support the usage of thick TiO2 nanofibers as photoanodes with very thin ZnO blocking layers to obtain high photocurrents and high conversion efficiencies.  相似文献   

12.
ZnO photoanode in dye-sensitized solar cells (DSSCs) has been successfully prepared by the electro-hydrodynamic (EHD) technique. The sandwich solar cells exhibited a short-circuit photocurrent density of 7.0 mA cm?2 and conversion efficiency of 1.65% with a quasi-solid-state electrolyte under simulated sun illumination (AM-1.5, 100 mW cm?2). The stability and the influencing factors, such as film thickness and light intensity, on solar cell performance were discussed.  相似文献   

13.
CuInS2 quantum dots (QDs) were deposited onto TiO2 nanorod arrays for different cycles by using successive ionic layer adsorption and reaction (SILAR) method. The effect of SILAR cycles on the light absorption and photoelectrochemical properties of the sensitized photoelectrodes was studied. With optimization of CuInS2 SILAR cycles and introduction of In2S3 buffer layer, quantum dot-sensitized solar cells assembled with 3-μm thick TiO2 nanorod film exhibited a short-circuit current density (Isc) of 4.51 mA cm−2, an open-circuit voltage (Voc) of 0.56 V, a fill factor (FF) of 0.41, and a power conversion efficiency (η) of 1.06%, respectively. This study indicates that SILAR process is a very promising strategy for preparing directly anchored semiconductor QDs on TiO2 nanorod surface in a straightforward but controllable way without any complicated fabrication procedures and introduction of a linker molecule.  相似文献   

14.
We prepared highly ordered titanium dioxide nanotube arrays (TNAs) by anodizing Ti foils in F containing electrolyte. The thickness and dye loading amount of TNAs were 26 μm and 1.06 × 10−7 mol cm−2, respectively. TiO2 nanoparticles (TNPs) were electrophoretically deposited on the inner wall of nanotube to produce coated nanotube arrays (TNAP). The dye loading was increased to 1.56 × 10−7 mol cm−2, and the electron transport rate improved. TNAs and TNAP were sensitized with ruthenium dye N3 to yield dye-sensitized TiO2 nanotube solar cells. The power conversion efficiency of TNA-based dye-sensitized solar cells (DSSCs) was 4.28%, whereas the efficiency of TNAP-based DSSCs increased to 6.28% when illuminated from the counter electrode. The increase of power conversion efficiency of TNAP-based DSSCs is ascribed to the increased surface area of TNAs and the faster electron transport rate.  相似文献   

15.
A TiO2 organic sol was synthesised for the preparation of a compact TiO2 layer on fluorine-doped tin oxide (FTO) glass by a dip-coating technique. The resultant thin film was used for the fabrication of dye-sensitized solar cells (DSSCs). The compact layer typically has a thickness of ca. 110 nm as indicated by its SEM, and consists of anatase as confirmed by the XRD pattern. Compared with the traditional DSSCs without this compact layer, the solar energy-to-electricity conversion efficiency, short-circuit current and open-circuit potential of the DSSCs with the compact layer were improved by 33.3%, 20.3%, and 10.2%, respectively. This can be attributed to the merits brought by the compact layer. It can effectively improve adherence of TiO2 to FTO surface, provide a larger TiO2/FTO contact area, and reduce the electron recombination by blocking the direct contact between the redox electrolyte and the conductive FTO surface.  相似文献   

16.
ClO4-poly(3,4-ethylenedioxythiophene)/TiO2/FTO (ClO4-PEDOT/TiO2/FTO) counter electrode (CE) in dye-sensitized solar cells (DSSCs) is fabricated by using an electrochemical deposition method. Comparing with the DSSCs with ClO4-PEDOT/FTO counter electrode, the photocurrent-voltage (I-V) measurement reveals that the photocurrent conversion efficiency (η), fill factor (FF) and short-circuit current density (JSC) of DSSCs with a ClO4-PEDOT/TiO2/FTO CE increase. The enhanced performances of the DSSCs are attributed to the higher JSC arising from the increase of active surface area of ClO4-PEDOT/TiO2/FTO CE. Electrochemical impedance spectra (EIS) also indicate that the charge-transfer resistance on the ClO4-PEDOT/electrolyte interface decreases. Cyclic voltammetry results indicate that the ClO4-PEDOT/TiO2/FTO electrode shows higher activity towards I3/I redox reaction than that of ClO4-PEDOT/FTO electrode.  相似文献   

17.
Bismuth–TiO2 nanocubes were synthesized via a facile sol–gel hydrothermal method with titanium tetraisopropoxide as the precursor. The influence of the bismuth on the size, morphology, crystallinity and optical behavior of TiO2 nanocubes were investigated. The samples were characterized by X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), field emission scanning electron microscopy (FESEM) and UV–visible spectroscopy (UV–vis). Photovoltaic behavior of dye-sensitized solar cells (DSSCs) fabricated using Bi–TiO2 nanocubes was studied. The DSSCs had an open-circuit voltage (Voc) of 590 mV, a short-circuit current density (Jsc) of 7.71 mA/cm2, and the conversion efficiency (η) of 2.11% under AM 1.5 illumination, a 77% increment as compared to pure TiO2 nanocubes.  相似文献   

18.
TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current (Jsc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved Jsc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure.  相似文献   

19.
The preparation of nanoporous TiO2 electrodes modified with CaTiO3 layers and their application in dye-sensitized solar cells (DSSCs) were reported. The as-prepared TiO2/CaTiO3 electrodes were characterized by XPS and XRD, indicating that a thin CaTiO3 layer was formed on the surface of nanoporous TiO2 electrodes. Compared with bare TiO2 electrodes, CaTiO3 modified TiO2 electrodes presented more dye adsorption. Moreover spectroelectrochemical studies showed that the concentration of free electrons in the conduction band of TiO2 was remarkably increased after surface modification. As a result, the photocurrent and photoelectric conversion efficiency of the modified electrodes were increased. The influence of the thickness of CaTiO3 layer on the photoelectrochemical properties of the modified electrodes was investigated. Experiment results showed that proper thickness of the modification layer is crucial to the photoelectrochemical properties of modified electrodes. The highest conversion efficiency reaches 9.23% under irradiation of 100 mW cm−2 white light, obtained with the electrode TiO2/CaTiO3(45 min), a 34% increase than that of bare TiO2 electrodes.  相似文献   

20.
A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm-2) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm-2). When SHI irradiation of oxygen ions of fluence 1 × 1013 ions/cm2 was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号