首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Ma  Lianbo  Lv  Yaohui  Wu  Junxiong  Xia  Chuan  Kang  Qi  Zhang  Yizhou  Liang  Hanfeng  Jin  Zhong 《Nano Research》2021,14(12):4442-4470

Potassium-ion batteries (PIBs) are appealing alternatives to conventional lithium-ion batteries (LIBs) because of their wide potential window, fast ionic conductivity in the electrolyte, and reduced cost. However, PIBs suffer from sluggish K+ reaction kinetics in electrode materials, large volume expansion of electroactive materials, and the unstable solid electrolyte interphase. Various strategies, especially in terms of electrode design, have been proposed to address these issues. In this review, the recent progress on advanced anode materials of PIBs is systematically discussed, ranging from the design principles, and nanoscale fabrication and engineering to the structure-performance relationship. Finally, the remaining limitations, potential solutions, and possible research directions for the development of PIBs towards practical applications are presented. This review will provide new insights into the lab development and real-world applications of PIBs.

  相似文献   

2.
Mao  Xi  Li  Hao  Kim  Jinwoo  Deng  Shuai  Deng  Renhua  Kim  Bumjoon J.  Zhu  Jintao 《Nano Research》2021,14(12):4644-4649

A solvent annealing-induced structural reengineering approach is exploited to fabricate polymersomes from block copolymers that are hard to form vesicles through the traditional solution self-assembly route. More specifically, polystyrene-b-poly(4-vinyl pyridine) (PS-b-P4VP) particles with sphere-within-sphere structure (SS particles) are prepared by three-dimensional (3D) soft-confined assembly through emulsion-solvent evaporation, followed by 3D soft-confined solvent annealing upon the SS particles in aqueous dispersions for structural engineering. A water-miscible solvent (e.g., THF) is employed for annealing, which results in dramatic transitions of the assemblies, e.g., from SS particles to polymersomes. This approach works for PS-b-P4VP in a wide range of block ratios. Moreover, this method enables effective encapsulation/loading of cargoes such as fluorescent dyes and metal nanoparticles, which offers a new route to prepare polymersomes that could be applied for cargo release, diagnostic imaging, and nanoreactor, etc.

  相似文献   

3.
Gong  Lanqian  Yang  Huan  Wang  Hongming  Qi  Ruijuan  Wang  Junlei  Chen  Shenghua  You  Bo  Dong  Zehua  Liu  Hongfang  Xia  Bao Yu 《Nano Research》2021,14(12):4528-4533

Designing earth-abundant electrocatalysts with high performance towards water oxidation is highly decisive for the sustainable energy technologies. This study develops a facile natural corrosion approach to fabricate nickel-iron hydroxides for water oxidation. The resulted electrode demonstrates an outstanding activity and stability with an overpotential of 275 mV to deliver 10 mA·cm−2. Experimental and theoretical results suggest the corrosion-induced formation of hydroxides and their transformation to oxyhydroxides would account for this excellent performance. This work not only provides an interesting corrosion approach for the fabrication of excellent water oxidation electrode, but also bridges traditional corrosion engineering and novel materials fabrication, which would offer some insights in the innovative principles for nanomaterials and energy technologies.

  相似文献   

4.
While metal nanoparticles(NPs)have shown great promising applications as heterogeneous catalysts,their agglomeration caused by thermodynamic instability is detrimental to the catalytic performance.To tackle this hurdle,we successfully prepared a functional and stable porphyrinic metal-organic framework(MOF),PCN-224-RT,as a host for encapsulating metal nanoparticles by direct stirring at room temperature.As a result,Pt@PCN-224-RT composites with well-dispersed Pt NPs can be constructed by introducing pre-synthesized Pt NPs into the precursor solution of PCN-224-RT.Of note,the rapid and simple stirring method in this work is more in line with the requirements of environmental friendly and industrialization compared with traditional solvothermal methods.  相似文献   

5.
Ren  Yumei  Yu  Chengbing  Chen  Zhonghui  Xu  Yuxi 《Nano Research》2021,14(6):2023-2036

As a promising graphene analogue, two-dimensional (2D) polymer nanosheets with unique 2D features, diversified topological structures and as well as tunable electronic properties, have received extensive attention in recent years. Here in this review, we summarized the recent research progress in the preparation methods of 2D polymer nanosheets, mainly including interfacial polymerization and solution polymerization. We also discussed the recent research advancements of 2D polymer nanosheets in the fields of energy storage and conversion applications, such as batteries, supercapacitors, electrocatalysis and photocatalysis. Finally, on the basis of their current development, we put forward the existing challenges and some personal perspectives.

  相似文献   

6.
Cui  Jiabin  Ma  Pin  Li  Weidan  Jiang  Rui  Zheng  Lirong  Lin  Yuan  Guo  Chang  Yin  Xiong  Wang  Leyu 《Nano Research》2021,14(12):4714-4718

Hierarchical Pt-alloys enriched with active sites are highly desirable for efficient catalysis, but their syntheses generally need time-consuming and elaborate annealing treatment at high temperature. We herein report a surface active-site engineering strategy for constructing the hierarchical PtNi nanocatalysts with an atomic Pt-skin layer (PtNi@Pt-SL) towards efficient triiodide reduction reaction (TRR) via an acid-dealloying approach. The facile acid-dealloying process promotes the formation of surface Pt active sites on the hierarchical Pt-alloys, and thus results in good catalytic performance towards TRR. Theoretical calculation reveals that the enhanced catalytic property stems from the moderate energy barriers for iodide atoms on the surface Pt active-sites. The surface active-site engineering strategy paves a new way for the design of active and durable electrocatalysts.

  相似文献   

7.
Zhang  Zhi-Cheng  Li  Yi  Wang  Jing-Jing  Qi  De-Han  Yao  Bin-Wei  Yu  Mei-Xi  Chen  Xu-Dong  Lu  Tong-Bu 《Nano Research》2021,14(12):4591-4600

Graphdiyne (GDY) is emerging as a promising material for various applications owing to its unique structure and fascinating properties. However, the application of GDY in electronics and optoelectronics are still in its infancy, primarily owing to the huge challenge in the synthesis of large-area and uniform GDY film for scalable applications. Here a modified van der Waals epitaxy strategy is proposed to synthesize wafer-scale GDY film with high uniformity and controllable thickness directly on graphene (Gr) surface, providing an ideal platform to construct large-scale GDY/Gr-based optoelectronic synapse array. Essential synaptic behaviors have been realized, and the linear and symmetric conductance-update characteristics facilitate the implementation of neuromorphic computing for image recognition with high accuracy and strong fault tolerance. Logic functions including “NAND” and “NOR” are integrated into the synapse which can be executed in an optical pathway. Moreover, a visible information sensing-memory-processing system is constructed to execute real-time image acquisition, in situ image memorization and distinction tasks, avoiding the time latency and energy consumption caused by data conversion and transmission in conventional visual systems. These results highlight the potential of GDY in applications of neuromorphic computing and artificial visual systems.

  相似文献   

8.
Song  Haizeng  Wu  Han  Ren  Tianqi  Yan  Shancheng  Chen  Tianhong  Shi  Yi 《Nano Research》2021,14(12):4386-4397

Black phosphorus (BP), a promising two-dimensional layer material, has attracted increasing attention due to its high carrier mobility, thickness-dependent tunable bandgap, in-plane anisotropy, and other advantageous characteristics. Because of these excellent characteristics, BP has been considered for applications in optics, electronics, optoelectronics, sensors, and energy storage. However, early studies found that BP has high chemical activity due to the lone pair electrons of P atoms on the surface and edges, resulting in rapid degradation under ambient conditions and limiting many applications. Recently, these thorny issues have been alleviated through superior physical and chemical passivation techniques, and passivated BP can be used in various devices under ambient and water conditions with excellent performance over a long period. This review, highlights the critical problems addressed in solving the serious instability of BP in a harsh environment by effective passivation technology. These unique strategies can provide more researchers with a fundamental study of the fascinating properties of BP. Finally, we found that passivated BP not only showed good stability under ambient conditions but also exhibited excellent performance compared with the original BP. Therefore, it is anticipated that this overview can contribute to the application of BP.

  相似文献   

9.
Meng  Zihan  Chen  Neng  Cai  Shichang  Wu  Jiawei  Wang  Rui  Tian  Tian  Tang  Haolin 《Nano Research》2021,14(12):4768-4775

The rational design and construction of hierarchically porous nanostructure for oxygen reduction reaction (ORR) electrocatalysts is crucial to facilitate the exposure of accessible active sites and promote the mass/electron transfer under the gas-solid-liquid triple-phase condition. Herein, an ingenious method through the pyrolysis of creative polyvinylimidazole coordination with Zn/Fe salt precursors is developed to fabricate hierarchically porous Fe-N-doped carbon framework as efficient ORR electrocatalyst. The volatilization of Zn species combined with the nanoscale Kirkendall effect of Fe dopants during the pyrolysis build the hierarchical micro-, meso-, and macroporous nanostructure with a high specific surface area (1,586 m2·g−1), which provide sufficient exposed active sites and multiscale mass/charge transport channels. The optimized electrocatalyst exhibits superior ORR activity and robust stability in both alkaline and acidic electrolytes. The Zn-air battery fabricated by such attractive electrocatalyst as air cathode displays a higher peak power density than that of Pt/C-based Zn-air battery, suggesting the great potential of this electrocatalyst for Zn-air batteries.

  相似文献   

10.
Wang  Xuemin  Liu  Ming  Zhang  Hang  Yan  Sihao  Zhang  Cui  Liu  Shuangxi 《Nano Research》2021,14(12):4569-4576

Despite the extensive application of porous nanostructures as oxygen electrocatalysts, it is challenging to synthesize single-metal state materials with porous structures, especially the ultrasmall ones due to the uniform diffusion of the same metal. Herein, we pioneer demonstrate a new size effect-based controllable synthesis strategy for the homogeneous Co nanokarstcaves assisted by Co-CN hybrids (CCHs). The preferential migration of cobalt atoms on the surface of small size zeolitic imidazolate framework (ZIF) with high surface energy during pyrolysis is the key factor for the formation of nanokarstcave structure. Furthermore, graphene can act as a diffusion barrier to prevent the agglomeration of nanoparticles in the synthesis process, which also plays an important role in the formation of porous nanostructures. In alkali media, CCHs achieve overpotential of 287 mV (@10 mA·cm−2) for oxygen evolution reaction (OER) and a half wave potential of 0.86 V (vs. RHE) for oxygen reduction reaction (ORR).

  相似文献   

11.
Yang  Zhengkun  Wang  Xiaolin  Zhu  Mengzhao  Leng  Xinyan  Chen  Wenxing  Wang  Wenyu  Xu  Qian  Yang  Li-Ming  Wu  Yuen 《Nano Research》2021,14(12):4512-4519

An efficient preparation and local coordination environment regulation of isolated single-atom sites catalysts (ISASC) for improved activity is still challenging. Herein, we develop a solid phase thermal diffusion strategy to synthesize Mn ISASC on highly uniform nitrogen-doped carbon nanotubes by employing MnO2 nanowires@ZIF-8 core-shell structure. Under high-temperature, the Mn species break free from core-MnO2 lattice, which will be trapped by carbon defects derived from shell-ZIF-8 carbonization, and immobilized within carbon substrate. Furthermore, the poly-dispersed Mn sites with two nitrogen-coordinated centers can be controllably renovated into four-nitrogen-coordinated Mn sites using NH3 treatment technology. Both experimental and computational investigations indicate that the symmetric coordinated Mn sites manifest outstanding oxygen reduction activity and superior stability in alkaline and acidic solutions. This work not only provides efficient way to regulate the coordination structure of ISASC to improve catalytic performance but also paves the way to reveal its significant promise for commercial application.

  相似文献   

12.
Sheng  Jian  Zhu  Sheng  Jia  Guodong  Liu  Xu  Li  Yan 《Nano Research》2021,14(12):4541-4547

Bifunctional electrocatalysts with high activity toward both oxygen reduction and evolution reaction are highly desirable for rechargeable Zn-air batteries. Herein, a kind of carbon nanotube (CNT) supported single-site Fe-N-C catalyst was fabricated via pyrolyzing in-situ grown Fe-containing zeolitic imidazolate frameworks on CNTs. CNTs not only serve as the physical supports of the Fe-N-C active sites but also provide a conductive network to facilitate the fast electron and ion transfer. The as-synthesized catalysts exhibit a half-wave potential of 0.865 V for oxygen reduction reaction and a low overpotential of 0.442 V at 10 mA·cm−2 for oxygen evolution, which is 310 mV smaller than that of Fe-N-C without CNTs. The rechargeable Zn-air batteries fabricated with such hybrid catalysts display a high peak power density of 182 mW·cm−2 and an excellent cycling stability of over 1,000 h at 10 mA·cm−2, which outperforms commercial Pt-C and most of the reported catalysts. This facile strategy of combining single-site Metal-N-C with CNTs network is effective for preparing highly active bifunctional electrocatalysts.

  相似文献   

13.
We employ thermoreflectance thermal imaging to directly measure the steady-state two-dimensional(2D)temperature field generated by nanostructured heat sources deposited on silicon substrate with different geometrical configurations and characteristic sizes down to 400nm.The analysis of the results using Fourier's law not only breaks down as size scales down,but it alsofails to capture the impact of the geometry of the heat source.The substrate effective Fourier thermal conductivities fitted to wire-shaped and circular-shaped structures with identical characteristic lengths are found to display up to 40%mismatch.Remarkably,a hydrcxjynamic heat transport model reproduces the observed temperature fields for all device sizes and shapes using just intrinsic Si parameters,i.e.,a geometry and size-independent thermal conductivity and nonlocal length scale.The hydrodynamic model provides insight into the observed thermal response and of the contradictory Fourier predictions.We discuss the substantial Silicon hydrodynamic behavior at room temperature and contrast it to InGaAs,which shows less hydrodynamic effects due to dominant phonon-impurity scattering.  相似文献   

14.
Hu  Zheng  Yuan  Tingbiao  Li  Hui  Qiu  Yishu  Zhou  Wei  Zhang  Jiangwei  Zhao  Yuxin  Hu  Shi 《Nano Research》2021,14(12):4795-4801

Two-dimensional (2D) oxide can be continuously produced by bubbling oxygen into liquid metals and the harvesting of these oxide relies on the proper choice of dispersion solvents. The mass-production of ligand-free 2D materials from high melting-point metals will not be possible if the limited stability of the traditional dispersion solvents is not circumvented. Herein, liquid tin was used for the first time in the bubbling protocol and 2D tin oxide was obtained in molten salts. The nanosheets were studied with combined microscopic and spectroscopic techniques, and high-density grain boundaries was identified between the sub-5-nm nano-crystallites in the nanosheets. It gives rise to the high performance in electrocatalytic CO2 reduction reaction. Density-functional-theory based calculation was applied to achieve a deeper understanding of the relationship between the activity, selectivity, and the grain-boundary features. The molten-salt based protocol could be explored for the synthesis of a library of functional 2D oxides.

  相似文献   

15.
Sun  Danping  Tan  Zhi  Tian  Xuzheng  Ke  Fei  Wu  Yale  Zhang  Jin 《Nano Research》2021,14(12):4370-4385

The development of rechargeable lithium-ion batteries (LIBs) is being driven by the ever-increasing demand for high energy density and excellent rate performance. Charge transfer kinetics and polarization theory, considered as basic principles for charge regulation in the LIBs, indicate that the rapid transfer of both electrons and ions is vital to the electrochemical reaction process. Graphene, a promising candidate for charge regulation in high-performance LIBs, has received extensive investigations due to its excellent carrier mobility, large specific surface area and structure tunability, etc. Recent progresses on the structural design and interfacial modification of graphene to regulate the charge transport in LIBs have been summarized. Besides, the structure-performance relationships between the structure of the graphene and its dedicated applications for LIBs have also been clarified in detail. Taking graphene as a typical example to explore the mechanism of charge regulation will outline ways to further understand and improve carbon-based nanomaterials towards the next generation of electrochemical energy storage devices.

  相似文献   

16.
Yin  Peiqun  Wu  Geng  Wang  Xiaoqian  Liu  Shoujie  Zhou  Fangyao  Dai  Lei  Wang  Xin  Yang  Bo  Yu  Zhen-Qiang 《Nano Research》2021,14(12):4783-4788

The rational fabrication of highly efficient electrocatalysts with low cost toward oxygen evolution reaction (OER) is greatly desired but remains a formidable challenge. In this work, we present a facile and straightforward method of incorporating NiCo-layered double hydroxide (NiCo-LDH) into GO-dispersed CNTs (GO-CNTs) with interconnected configuration. X-ray absorption spectroscopy (XAS) reveals the strong electron interaction between NiCo-LDH and the underlying GO-CNTs substrate, which is supposed to facilitate charge transfer and accelerate the kinetics for OER. By tuning the amount of CNTs, the optimized NiCo-LDH/GO-CNTs composite can achieve a low overpotential of 290 mV at 10 mA·cm−2 current density, a small Tafel slope of 66.8 mV·dec−1 and robust stability, superior to the pure NiCo-LDH and commercial RuO2 in alkaline media. The preeminent oxygen evolution performance is attributed to the synergistic effect stemming from the merits and the intimate electron interaction between LDH and GO-CNTs. This allows NiCo-LDH/GO-CNTs to be potentially applied in an industrial non-noble metal-based water electrolyzer as the anodic catalysts.

  相似文献   

17.
Li  Jing  Zhao  Jie  Li  Shengqiang  Chen  Yang  Lv  Weiqiang  Zhang  Jiahui  Zhang  Libing  Zhang  Zhen  Lu  Xiaoquan 《Nano Research》2021,14(12):4689-4695

The metal—organic frameworks (MOFs) are expected as ideal biomimetic enzymes for colorimetric glucose detection because of their large surface areas, well defined pore structures, tunable chemical composition, and multi-functional sites. However, the intrinsically chemical instability and low mimetic enzyme activity of MOFs hinder the application of them in imitating the enzyme reactions. In this work, we demonstrated a metal-MOF synergistic catalysis strategy, by loading Pt nanoparticles (Pt NPs) on MIL-88B-NH2 (Fe-MOF) to increase peroxidase-like activity for the detection of glucose. The induced electrons transfer from Pt atom to Fe atom accelerated the redox cycling of Fe3+/Fe2+, improved the overall efficiency of the peroxidase-like reaction, and enabled the efficient and robust colorimetric glucose detection, which was proved by both experiments and density functional theory (DFT) calculation. Additionally, the sensitivity and chemical stability of this synergistic effect strategy to detect the glucose are not affected by the complex external factors, which represented a great potential in fast, easy, sensitive, and specific recognition of clinical diabetes.

  相似文献   

18.
Jiang  Haoyu  Qi  Jizhen  Wu  Dongchang  Lu  Wei  Qian  Jiahui  Qu  Haifeng  Zhang  Yixiao  Liu  Pei  Liu  Xi  Chen  Liwei 《Nano Research》2021,14(12):4802-4807

Ferroelectric barium titanate nanoparticles (BTO NPs) may play critical roles in miniaturized passive electronic devices such as multi-layered ceramic capacitors. While increasing experimental and theoretical understandings on the structure of BTO and doped BTO have been developed over the past decade, the majority of the investigation was carried out in thin-film materials; therefore, the doping effect on nanoparticles remains unclear. Especially, doping-induced local composition and structure fluctuation across single nanoparticles have yet to be unveiled. In this work, we use electron microscopy-based techniques including high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), integrated differential phase contrast (iDPC)-STEM, and energy dispersive X-ray spectroscopy (EDX) mapping to reveal atomically resolved chemical and crystal structure of BTO and strontium doped BTO nanoparticles. Powder X-ray diffraction (PXRD) results indicate that the increasing strontium doping causes a structural transition from tetragonal to cubic phase, but the microscopic data validate substantial compositional and microstructural inhomogeneities in strontium doped BTO nanoparticles. Our work provides new insights into the structure of doped BTO NPs and will facilitate the materials design for next-generation high-density nano-dielectric devices.

  相似文献   

19.
Jiang  Huaning  Zhang  Peng  Wang  Xingguo  Gong  Yongji 《Nano Research》2021,14(6):1789-1801

The development of magnetic two-dimensional (2D) materials in its infancy has generated an enormous amount of attention as it offers an ideal platform for the exploration of magnetic properties down to the 2D limit, paving the way for spintronic devices. Due to the nonnegligible advantages including time efficiency and simplified process, the facile bottom-up chemical vapor deposition (CVD) is regarded as a robust method to fabricate ultrathin magnetic nanosheets. Recently, some ultrathin magnets possessing fascinating properties have been successfully synthesized via CVD. Here, the recent researches toward magnetic 2D materials grown by CVD are systematically summarized with special emphasis on the fabrication methods. Then, heteroatoms doping and phase transition induced in CVD growth to bring or tune the magnetic properties in 2D materials are discussed. Characterizations and applications of these magnetic materials are also discussed and reviewed. Finally, some perspectives in need of urgent attention regarding the development of CVD-grown magnetic 2D materials are proposed.

  相似文献   

20.
Lin  Lihong  Chen  Zhuo  Chen  Wenxing 《Nano Research》2021,14(12):4398-4416

The depletion of energy and increasing environmental pressure have become one of the main challenges in the world today. Synthetic high-efficiency catalysts bring hope for efficient conversion of energy and effective treatment of pollutants, especially, single-atom catalysts (SACs) are promising candidates. Herein, we comprehensively summarizes the atomic diffusion strategy, which is considered as an effective method to prepare a series of SACs. According to the different diffusion forms of the precursors, we review the synthesis pathways of SACs from three aspects: gas diffusion, solid diffusion and liquid diffusion. The gaseous diffusion method mainly discusses atomic layer deposition (ALD) and chemical vapor deposition (CVD), both of which carry out gas phase mass transfer at high temperatures. The solid-state diffusion method can be divided into nanoparticle transformation into single atoms and solid atom migration. Liquid diffusion mainly describes the electrochemical method and the molten salt method. We hope this review can trigger the rational design of SACs.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号