首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The retention mechanism in reversed-phase liquid chromatography (RPLC) has been investigated by examining the temperature dependence of retention, with emphasis on the role of the stationary phase in the retention process. Both chromatographic temperature studies and differential scanning calorimetry were used to examine the role of alkyl chain bonding density on the retention mechanism in RPLC. Phase transitions of reversed-phase stationary phases were observed at bonding densities greater than 2.84 mumol/m2. Thermodynamic constants for the transfer of a solute from the mobile phase to the stationary phase (delta H degrees and delta S degrees) were calculated for low bonding density columns, and comparison of these values to previously reported values for the partitioning of a nonpolar solute from the bulk organic liquid to water indicated that the chromatographic retention process is not well-modeled by bulk-phase oil-water partitioning processes. In addition, this data showed that the entropic contribution to retention becomes more significant with respect to the enthalpic contribution as the stationary-phase bonding density is increased, providing additional support that partitioning, rather than adsorption, is the relevant model of retention.  相似文献   

2.
The goal of this study was to elucidate the roles played by the stationary and mobile phases in retention in reversed-phase liquid chromatography (RPLC) in terms of their individual enthalpic and entropic contribution to the Gibbs free energy of retention. The experimental approach involved measuring standard enthalpies of transfer of alkylbenzenes from typical mobile phases used in RPLC (methanol/water and acetonitrile/water mixtures), as well as from n-hexadecane (a simple analogue of the stationary phase) to the gas phase, using high-precision headspace gas chromatography. By combining the measured enthalpies with independently measured free energies of transfer, the entropies of transfer were obtained. This allowed us to examine more fully the contribution that each phase makes to the overall retention. It was found that the standard enthalpy of retention in RPLC (i.e., solute transfer from the mobile phase to the stationary phase) is favorable, due to the large and favorable stationary-phase contribution, which actually overcomes an unfavorable mobile-phase contribution to the enthalpy of retention. Further, the net free energy of retention is favorable due to the favorable enthalpic contribution to retention, which arises from the net interactions in the stationary phase. Entropic contributions to retention are not controlling. Therefore, to a great extent, retention is due to enthalpically dominated lipophilic interaction of nonpolar solutes with the stationary phase and not from solvophobic processes in the mobile phase. Further, our enthalpy data support a "partition-like" mechanism of retention rather than an "adsorption-like" mechanism. These results indicate that the stationary phase plays a very significant role in the overall retention process. Our conclusions are in direct contrast to the solvophobic model that has been used extensively to interpret retention in RPLC.  相似文献   

3.
Various driving forces have been suggested to explain retention and selectivity in reversed-phase liquid chromatography (RPLC). To provide molecular-level information on the retention mechanism in RPLC, configurational-bias Monte Carlo simulations in the Gibbs ensemble were carried out for model systems consisting of three phases: an n-hexadecane retentive phase, a mobile phase with varying water-methanol composition, and a helium vapor phase as reference state. Liquid n-hexadecane functions as a model of a hydrophobic stationary phase, and a wealth of experimental data exists for this system. Gibbs free energies for solute transfers from gas to retentive phase, from gas to mobile phase, and from mobile to retentive phase were determined for a series of short linear alkanes and primary alcohols. Although the magnitude of the incremental Gibbs free energy of transfer for a methylene segment is always larger for the gas- to retentive-phase transfer than the gas- to mobile-phase transfer, it is found that the partitioning of alkanes and alkyl tail groups is mostly affected by the changes in the aqueous mobile phase that occur when methanol modifiers are added. In contrast, the partitioning of the alcohol headgroup is sensitive to changes in both the n-hexadecane and the mobile phases. In particular, it is found that hydrogen-bonded aggregates of methanol are present in the n-hexadecane phase for higher methanol concentrations in the mobile phase. These aggregates strongly increase alcohol partitioning into the retentive phase. The simulation data clearly demonstrate that due to modification of the retentive-phase hydrocarbons by solvent components, neither the solvophobic theory of RPLC, advocated by Horvath and co-workers, nor the lipophilic theory of RPLC, advocated by Carr and co-workers, can adequately describe the separation mechanism of the hexadecane model system of a retentive phase studied here nor the more complex situation present in actual RPLC systems.  相似文献   

4.
The reversal of the elution order of cyclic alpha-amino acid enantiomers as a function of the temperature on a copper(II)-N,S-dioctyl-D-penicillamine ligand-exchange column is described. The thermodynamic parameters accounting for the retention and the separation of analytes were determined by means of van't Hoff plots. The influence of different chromatographic conditions on these parameters was investigated, showing little effect of the Cu(II) concentration in the eluent but strong influence of the organic modifier content on the separation. Further, the pH of the mobile phase was found to be a determining factor for the retention of the analytes. Based on these findings, a separation mechanism is postulated comprising the importance of complex formation for primary docking at the stationary phase, while hydrophobic interactions are crucial for chiral discrimination.  相似文献   

5.
The adsorption behavior of four perfluoroalkyl acids, including the environmentally relevant perfluorooctanoic acid, has been investigated on a straight-chain perfluorohexyl adsorbent. The aim of this study was to probe the potential of perfluorinated materials for the analysis and enrichment of perfluoroalkyl analytes. Water/acetonitrile mixtures, to which formic acid had been added (generally, 0.1%), were employed as mobile phases. For all perfluorinated acids, a U-shaped retention profile was observed by changing the amount of acetonitrile in the mobile phase. This behavior has been correlated to the excess adsorption of the organic component on the adsorbent surface. The concept of perfluoromethylene selectivity has been defined as the ability of a chromatographic system to discriminate between molecules that differ by a single perfluoromethylene group. The contribution to the Gibbs free energy of phase transfer for the passage of a perfluoroalkyl carbon from the mobile to the stationary phase has been evaluated. This information, in addition to the traditional van't Hoff analysis, has also been used to estimate the analogous contribution for the transfer of a carboxylic unit. Finally, insights into the retention mechanisms of perfluoroalkyl acids on straight-chain perfluorohexyl sorbents are discussed.  相似文献   

6.
In high-performance liquid chromatography (HPLC) using a poly(octadecylsiloxane) as a stationary phase, methanol as a mobile phase, C(60) and C(70) fullerenes as solutes, and water as a mobile phase modifier, a study on the surface tension effect of water on fullerene retention was carried out by varying the water concentration [W] and the column temperature T. The thermodynamic parameters for fullerene transfer from the mobile to the stationary phase were determined from linear van't Hoff plots. An enthalpy-entropy compensation revealed that the types of interactions between fullerenes and the stationary phase were independent of the fullerene structure and the mobile phase composition. An analysis of the experimental variations of the retention factor and the selectivity values with [W] was performed using a novel geometrical model. It was shown that the increase in fullerene retention accompanying the water concentration was due to the increased effects of surface tension. This brought about an increase in the interactions between fullerene and the stationary phase, explaining the observed thermodynamic parameter trends over the water concentration range. The theoretical model provided an estimation of the radius of fullerene which was found for C(60) to be equal to 3.3 ? and an activation energy during the transfer equal to 9.8 kJ/mol.  相似文献   

7.
The analysis of experimental results in reversed-phase liquid chromatography (RPLC) allows further discussion of the restricted diffusion model of surface diffusion formulated on the basis of the absolute rate theory. Chromatographic data were acquired on different RPLC systems with two series of homologous compounds, several stationary phases having different alkyl ligand densities and ligands of various lengths, and methanol/water mobile phases of different compositions. The enthalpy-entropy compensation observed and the linear free energy relationships found for surface diffusion suggest that the surface diffusion mechanism remains probably the same in all RPLC conditions studied. Whereas the isosteric heat of adsorption approaches zero with decreasing retention, the activation energy of surface diffusion tends toward a finite limit and the surface diffusion coefficient tends toward a value near the corresponding molecular diffusivity. These results support the validity of the restricted diffusion model. The influence of different factors on the validity of this model (i.e., the activation energy and the frequency factor of surface diffusion, and the surface tortuosity) was also considered.  相似文献   

8.
A detailed, molecular-level understanding of the retention mechanism in reversed-phase liquid chromatography (RPLC) has eluded analytical chemists for decades. Through validated, particle-based Monte Carlo simulations of a model RPLC system consisting of dimethyloctadecylsilanes at a coverage of 2.9 micro mol/m2 on an explicit silica substrate with unprotected residual silanols in contact with a water/methanol mobile phase, we show that the molecular-level retention processes for nonpolar and polar analytes, such as alkanes and alcohols, are much more complex than what has been previously deduced from thermodynamic and theoretical arguments. In contrast to some previous assumptions, the simulations indicate that both partitioning and adsorption play a key role in the separation process and that the stationary phase in RPLC behaves substantially different from a bulk hydrocarbon phase. The retention of nonpolar methylene segments is dominated by lipophilic interactions with the retentive phase, while solvophilic interactions are more important for the retention of the polar hydroxyl group.  相似文献   

9.
The retention mechanism of the protonated cation in propranolol chloride on C18-Xterra was investigated using mobile phases of various compositions. Accurate adsorption data were measured by frontal analysis, with a mixture of methanol and water (25% methanol), with no salt, as the mobile phase. The experimental isotherm has at least two inflection points, at concentrations of about 0.2 and 6.0 g/L, respectively. This precludes the modeling of these data with a simple convex-upward isotherm (e.g., Langmuir). The adsorption energy distribution or relationship between the number of sites on the adsorbent surface and the energy of adsorption on these sites was calculated by assuming Moreau isotherm behavior (S-shaped isotherm). This model has never been applied to describe the surface heterogeneity of any RPLC adsorbent. The calculation converged toward a bimodal energy distribution. Accordingly, the bi-Moreau model is the simplest theoretical model accounting for the adsorption data of propranolol from a mobile phase without salt. The complex-overloaded band profiles of propranolol measured in the presence of increasing concentrations of a supporting salt (KCl) in the mobile phase demonstrate that the same isotherm model applies also under these conditions, as was merely assumed in a previous work. The elution band profiles of propranolol calculated with the bi-Moreau isotherm model for solutions of salts of different natures (CaCl2, CsCl, Na2SO4) in the same mobile phase agree very well with the experimental band profiles.  相似文献   

10.
The retention mechanism of a weak polar solute, a series of 10 benzodiazepines in reversed phase liquid chromatography, was investigated over a wide range of mobile phase compositions. The values of enthalpy (ΔH°) and entropy (ΔS°) of transfer from the mobile to the stationary phases were determined. The method studied each factor (water fraction Φ in the acetonitrile (ACN)/water mixture and column temperature) controlling the retention mechanism. The changes in ΔH° and ΔS° as a function of the water fraction Φ in the ACN/water mixture were examined. These variations are explained using the organization of organic modifier (ACN) in clusters in the ACN/water mixture. A change in the retention mechanism thus indicated when the ACN/water mixture was used instead of the hydrogen-bonded mobile phase such as CH(3)OH/water. Enthalpy-entropy compensation revealed that the retention mechanism was independent of the water fraction Φ but showed that differences between the molecular structures of the benzodiazepines contributed more significantly to changes in the retention process in the CH(3)OH/water mixture than in the ACN/water mixture.  相似文献   

11.
A mathematical model was developed for the estimation of binding constants by capillary electrophoresis. The effective electrophoretic mobility in a solute mixture is dependent on the cyclodextrin concentration in the background electrolyte (BGE) as well as the stoichiometry and the binding constant of the guest-cyclodextrin complex. As well, a determination of the degree of complexation, nc (the percent of complexed guest) could be carried out. The model was applied to a series of imidazole derivatives. Thermodynamic data for the solute complexation mechanism were calculated. Different van't Hoff plot shapes of the degree of complexation were observed with different BGE pH values, indicating a change in the solute complexation mechanism. Enthalpy-entropy compensation revealed that the solute complexation mechanism was independent of the imidazole derivative molecular structure, the same at pH = 4.5, 5.0, 5.5, 6.0, and 6.5 but changed at pH = 7.0 and 7.5. Topological defects formed during a symmetry-breaking transition could be responsible for the modification of the structure of the cyclodextrin cavity and explained the nc variations in relation to pH and temperature.  相似文献   

12.
The effect of temperature on the adsorption and retention behaviors of a low molecular weight compound (phenol) on a C18-bonded silica column (C18-Sunfire, Waters) from aqueous solutions of methanol (20%) or acetonitrile (15%) was investigated. The results of the measurements were interpreted successively on the basis of the linear (i.e., overall retention factors) and the nonlinear (i.e., adsorption isotherms, surface heterogeneity, saturation capacities, and equilibrium constants) chromatographic methods. The confrontation of these two approaches confirmed the impossibility of a sound physical interpretation of the conventional Van't Hoff plot. The classical linear chromatography theory assumes that retention is determined by the equilibrium thermodynamics of analytes between a homogeneous stationary phase and a homogeneous mobile phase (although there may be two or several types of interactions). From values of the experimental retention factors in a temperature interval and estimates of the activity coefficients at infinite dilution in the same temperature interval provided by the UNIFAC group contribution method, evidence is provided that such a retention model cannot hold. The classical Van't Hoff plot appears meaningless and its linear behavior a mere accident. Results from nonlinear chromatography confirm these conclusions and provide explanations. The retention factors seem to fulfill the Van't Hoff equation, not the Henry constants corresponding to the different types of adsorption sites. The saturation capacities and the adsorption energies are clearly temperature dependent. The temperature dependence of these characteristics of the different assorption sites are different in aqueous methanol and acetonitrile solutions.  相似文献   

13.
The retention mechanism in RPLC mode was investigated based on the acquisition of adsorption isotherm data by frontal analysis measurements and their modeling. This work is a review of the results of four years of adsorption data measurements. The data were acquired on a wide variety of brands of C18-silica columns (from Akzo Nobel, Bishoff, Hypersil, Merck, Phenomenex, Supelco, Vydac, and Waters) with several low molecular weight compounds such as phenol (94 g/mol), caffeine (194 g/mol), tryptophan (204 g/mol), sodium 2-naphthalenesulfonate (235 g/mol), and propranololium chloride (295 g/mol). The mobile phase was a mixture of methanol and water at variable composition. The adsorption isotherms were all convex upward (langmuirian), and the degree of heterogeneity of the adsorption system was determined from the calculation of the adsorption energy distribution using the expectation-maximization method. The adsorption isotherm parameters (number of types of adsorption sites, surface concentration of each type of site, and difference between the adsorption energies E(i) - E(j) on sites i and j), obtained from the mathematical fit of the adsorption data to the appropriate multi-Langmuir adsorption isotherm model, were analyzed and compared. The results allow the drawing of general conclusions regarding the relationships between the size of the analyte and the adsorption properties (saturation capacities, adsorption energies) characterizing the retention mechanism in RPLC mode for neutral, anionic, and cationic compounds.  相似文献   

14.
A novel equation (Guillaume Y. C. et al. Anal. Chem. 1998, 70, 608) modeling the weak polar solute retention in reversed-phase liquid chromatography (RPLC) was applied to fullerene molecules C60 and C70. In RPLC, with an organic modifier (OM)/water mobile phase, the fullerene cluster solvation energies were calculated for OM = methanol, ethanol, propanol, butanol, and pentanol. An enthalpy-entropy compensation revealed that the type of interactions between fullerenes and the stationary phase was independent of both the fullerene and organic modifier structures. The energetics of OM and OM-water cluster exchange processes in the mobile phase were investigated in relation to the carbon atom number of the hydrophobic chain of the OM. Two linear correlations were found between the Gibbs free energy changes in the solvent exchange processes which confirmed that (i) a reversal elution order existed for C60 and C70 when methanol was changed into ethanol, propanol, butanol, pentanol and that (ii) the mobile phase was dominant in governing selectivity changes in nonpolar solutes.  相似文献   

15.
Room temperature ionic liquids (RTIL) are molten salts starting to be used as nonmolecular solvents in separation methods mainly for their extremely low vapor pressure and thermal stability. RTILs are formed by an anion associated to a cation. This intrinsic structure gives them a dual nature. When used as additives in RPLC mobile phases to enhance basic compound separation, RTILs lose their particular physicochemical properties to become just salts. However, a given RTIL is not equivalent to another one made with the same cation. It is shown that both the anion and the cation contribute to solute retention and peak efficiency extending beyond simple "salting-out" or ion-pairing effects. Nine different alkyl-methyl-imidazolium ionic liquids with different alkyl chain length and chloride or BF(4-) or PF(6-) anions were used as additives (50 mM max. conc.) in the liquid chromatography separation of some cationic basic solutes on a Kromasil C18 column. It is shown with sodium salts and an acetonitrile-water 30/70 v/v mobile phase that anions can adsorb on the stationary phase surface according to their lyotropic character. They can also form ion pairs with the cationic basic solutes. Alkyl-imidazolium cations also adsorb on the C18 bonded stationary phase due to hydrophobic character depending on their alkyl chain length. Anion adsorption dramatically increases the cationic solute retention factors when cation adsorption decreases them. The cation adsorption is mainly responsible for peak shape and efficiency enhancements. RTILs are additives that enhance the basic cationic solute peak shape changing peak position. A wise choice of the appropriate combination of anion lyotropy with imidazolium cation hydrophobicity allows playing with solute selectivity and analysis duration.  相似文献   

16.
Mean-field statistical thermodynamics theory has recently been developed to account for the partitioning of solutes from aqueous mobile phases into reversed-phase liquid chromatography stationary phases. Several predictions are tested here against an extensive data base of nearly 350 sets of experiments. In agreement with theory, we find that (i) the dependence of retention on mobile phase composition can often be suitably linearized through use of a type of composition plot recently suggested by Dill, (ii) retention measurements can be used to determine the binary interaction constants of solutes with solvents, and (iii) ET-30 solvent probe experiments appear to provide a direct measure of the binary interaction constants. This work suggests that the simple random-mixing approximation for solutes with solvents is often useful even for complex chromatographic solutions.  相似文献   

17.
Hearn MT  Zhao G 《Analytical chemistry》1999,71(21):4874-4885
In this paper, we describe a general procedure to evaluate the thermodynamics of the interaction between polypeptides and hydrophobic ligands in the presence of aquo-organic solvent mixtures. These studies address experimental requirements for the determination of the linear free energy relationships, derivation of partition coefficients or other extrathermodynamic parameters such as contact areas, or assessment of the conformational changes that may occur when polypeptides or proteins interact with immobilized nonpolar ligands. Not unexpectedly from thermodynamic arguments, the trends and magnitudes of free energy parameters, such as the enthalpy of association, as previously derived in many studies from gradient elution reversed-phase high-performance liquid chromatographic (RP-HPLC) measurements are often different from the data for the same parameters derived from equilibrium binding or microcalorimetric determinations. To reconcile these divergencies and to more closely examine the thermodynamic basis of the interaction of polypeptides with nonpolar ligands, the dependency of the logarithmic capacity factor, ln k', on temperature, T, for several polypeptides (bombesin, beta-endorphin, glucagon) have been investigated using a n-butylsilica and acetonitrile-water or methanol-water mixtures of defined solvent compositions. With low-pH, acetonitrile-water mixtures, the van't Hoff plots, i.e., the plots of ln k' versus 1/T, were nonlinear over the range of T = 278-358 K, although within a narrow temperature range, e.g., from T = 278-308 K, the experimental data for these polypeptides could be approximated by a linear relationship. This nonclassical van't Hoff behavior was associated with interactive processes that involved temperature-dependent enthalpic, entropic, and heat capacity changes. In contrast, with low-pH, methanol-water mixtures, the van't Hoff plots showed dependencies that were essentially linear over the range of T = 278-358 K. The slopes of the van't Hoff plots with acetonitrile-water and methanol-water mixtures at a defined T value and solvent composition were significantly larger than those found for the corresponding experiments carried out under gradient elution RP-HPLC conditions. From these plots of ln k' versus 1/T, the changes in the apparent enthalpy of association (delta H++assoc) and the apparent entropy of association (delta S++assoc) for the interaction of these polypeptides with the solvated n-butyl ligands at different T and solvent compositions have been determined. For these polypeptides, both delta H++assoc and delta S++assoc exhibited linear dependencies on the volume fraction, phi, of the organic solvent over a narrow range of T, but the slopes of these plots were dependent on the T range examined. The dependencies of the slope term, S, and the intercept term, ln ko, derived from the plots of ln k' versus phi as a function of T, have also been investigated. A new relationship linking the S values with delta H++assoc and delta S++assoc as a function of T and phi has been derived and validated. In addition, the relationship between S, delta H++assoc, delta S++assoc, the apparent change in heat capacity, delta C++assoc, and the accessible surface area, delta Atot, of these polypeptides has been examined, thus providing a linkage of these thermodynamic and extrathermodynamic parameters to the partition coefficient, P, and the molecular properties of these polypeptides. The results confirm that entropy-enthalpy compensation effects participate in the interaction of polypeptides with hydrophobic ligands. This investigation has confirmed that the use of solvent-water mixtures of defined composition, rather than the more convenient practice of using gradient elution methods, is essential if thermodynamically consistent values of the binding affinities and partition coefficients are to be quantitatively derived. (ABSTRACT TRUNCATED)  相似文献   

18.
Cook HA  Hu W  Fritz JS  Haddad PR 《Analytical chemistry》2001,73(13):3022-3027
The retention mechanism of electrostatic ion chromatography (EIC) is currently under debate and is the focus of this paper. A comprehensive set of retention data has been obtained on a C18 column coated with the zwitterionic surfactant 3-(N,N-dimethylmyristylammonio)propanesulfonate used with a range of mobile phases in which both the mobile-phase anion and cation have been varied systematically. Electro-osmotic flow measurements were also obtained on fused-silica capillaries coated with the zwitterion (and also some monofunctional surfactants) and were used to evaluate the nature of the surface charge on the layer of adsorbed surfactant in the presence of various background electrolytes. A new retention mechanism for EIC was developed on the basis of these data. This mechanism proposes that equilibration of the bound zwitterions with a mobile phase containing a suitable electrolyte causes the establishment of a charged layer created by the terminal sulfonate groups of the zwitterion, which acts as a Donnan membrane. The magnitude and polarity of the charge on this membrane depends on the nature of the mobile-phase ions. The Donnan membrane exerts weak electrostatic repulsion or attraction effects on analyte anions. A second component of the retention mechanism is chaotropic interaction of the analyte anion with the quaternary ammonium functional group of the zwitterion. This interaction exerts the major effect on the separation selectivity of EIC, such that analyte anions are eluted in order of increasing chaotropic interactions in accordance with the Hofmeister series.  相似文献   

19.
Analytical ultracentrifugation is used for determination of the molecular weights and the sedimentation coefficients of poly(sodium undecanoyl-L-valinate) (PSUV) and poly(sodium undecanoyl-L-threoninate) (PSUT) at different temperatures. Plots of absorbance as a function of radius indicates that both PSUV and PSUT are highly monodispersed. A method for evaluating the partial specific volumes using density measurements is presented. The partial specific volumes of PSUV are slightly higher than those of PSUT. In addition, the temperature dependence of the retention factor in electrokinetic chromatography was used to estimate the enthalpy, the entropy, and the Gibbs free energy of the surfactant/analyte complexes. Five phenylthiohydantoin-DL-amino acids were separated and each enantiomeric pair was completely resolved. Comparison of the thermodynamic values obtained with PSUV vs PSUT using a van't Hoff relationship suggests that PSUT, with a less favorable free energy change (i.e., less negative delta (delta G)), generates a more positive entropy change, hence slightly less chiral resolution.  相似文献   

20.
Reversed phase high-performance liquid chromatography (RP-HPLC) is demonstrated for hydrophobic analytes such as aromatic hydrocarbons using only water as the mobile phase. Achievement of reasonable capacity factors for these types of compounds without the need for toxic and costly organic modifiers in the mobile phase is accomplished by substantially decreasing the phase volume ratio of stationary phase relative to the mobile phase volume and by increasing the polarity of the stationary phase relative to stationary phase materials commonly used for RP-HPLC. Applying a stationary phase of trifluoropropylsiloxane, which is a common gas chromatographic stationary phase material, to nonporous glass microspheres yields a stationary phase with a phase volume ratio reduced by about 2 orders of magnitude as compared to common liquid chromatographic packing materials. As a result, a separation was obtained for hydrophobic organic analytes such as benzene, toluene, ethylbenzene, and isopropylbenzene using a water mobile phase at ambient temperature. A separation of sodium benzoate, benzaldehyde, benzene, and butyrophenone is shown in less than 3 min using a water mobile phase and UV/visible absorbance detection. Additionally, the separation of the ionic surfactant species octyl sulfate and dodecyl sulfate in water in less than 3 min, using unsuppressed conductivity detection, is achieved with a separation mechanism based on interactions with the hydrophobic portion of the surfactant. A water mobile phase offers many potential advantages over traditional mixed aqueous/organic solvent systems. In addition to saving on the cost and expense of buying and disposing of toxic solvents and waste, there is less exposure of the operator to potentially harmful solvents. Increased consistency in reproducing retention times can be expected, since there will not be any variability in solvent strength due to slight variations in mobile phase composition. A water mobile phase produces an environment that should provide an inherent advantage of increased signal-to-noise ratio for detection. Additionally, excellent predictions of the octanol/water partitioning coefficient and aqueous solubility for hydrophobic analytes are obtained from a single measurement of the capacity factor in the water mobile phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号