共查询到20条相似文献,搜索用时 0 毫秒
1.
In trial 1, 15 Holsteins were fed 3 total mixed rations (TMR) with 33% neutral detergent fiber in 3 × 3 Latin squares (28-d periods). Two TMR contained (dry matter basis): 40% control alfalfa silage (CAS) or 40% ammonium tetraformate-treated alfalfa silage (TAS), 20% corn silage (CS), 33% high-moisture shelled corn (HMSC), 6% solvent soybean meal (SSBM), and 18% crude protein (CP); the third TMR contained 54% red clover silage (RCS), 6% dried molasses, 33% HMSC, 6% SSBM, and 16.3% CP. Silages differed in nonprotein N (NPN) and acid detergent insoluble N (ADIN; % of total N): 50 and 4% (CAS); 45 and 3% (TAS); 27 and 8% (RCS). Replacing CAS with TAS increased intake, yields of milk, fat-corrected milk, protein, and solids-not-fat, and apparent dry matter and N efficiency. Replacing CAS with RCS increased intake and N efficiency but not milk yield. Replacing CAS or TAS with RCS lowered milk urea N, increased apparent nutrient digestibility, and diverted N excretion from urine to feces. In trial 2, 24 Holsteins (8 ruminally cannulated) were fed 4 TMR in 4 × 4 Latin squares (28-d periods). Diets included the CAS, TAS, and RCS (RCS1) fed in trial 1 plus an immature RCS (RCS2; 29% NPN, 4% ADIN). The CAS, TAS, and RCS2 diets contained 36% HMSC and 3% SSBM and the RCS1 diet contained 31% HMSC and 9% SSBM. All TMR had 50% legume silage, 10% CS, 27% neutral detergent fiber, and 17 to 18% CP. Little difference was observed between cows fed CAS and TAS. Intakes of DM and yields of milk, fat-corrected milk, fat, protein, lactose, and solids-not-fat, and milk fat and protein content were greater on alfalfa silage vs. RCS. Blood urea N, milk urea N, ruminal ammonia, and total urinary N excretion were reduced on RCS, suggesting better N utilization on the lower NPN silage. Apparent N efficiency tended to be higher for cows fed RCS but there was no difference when N efficiency was expressed as kilograms of milk yield per kilogram of total N excreted. 相似文献
2.
Effect of varying dietary ratios of alfalfa silage to corn silage on production and nitrogen utilization in lactating dairy cows 总被引:1,自引:0,他引:1
Twenty-eight (8 ruminally cannulated) lactating, multiparous Holstein cows were blocked by DIM and randomly assigned to 7 replicated 4 × 4 Latin squares (28-d periods) to investigate the effects of different dietary ratios of alfalfa silage (AS) to corn silage (CS) on production, N utilization, apparent digestibility, and ruminal metabolism. The 4 diets contained (dry matter basis): A) 51% AS, 43% rolled high-moisture shelled corn (HMSC), and 3% solvent soybean meal (SSBM); B) 37% AS, 13% CS, 39% HMSC, and 7% SSBM; C) 24% AS, 27% CS, 35% HMSC, and 12% SSBM; and D) 10% AS, 40% CS, 31% HMSC, and 16% SSBM. Dietary crude protein contents were 17.2, 16.9, 16.6, and 16.2% for diets A, B, C, and D. All 4 diets were high in energy, averaging 49% nonfiber carbohydrates and 24% neutral detergent fiber. Intake of dry matter, yield of milk, 3.5% fat-corrected milk and fat, milk fat content, and apparent digestibility of neutral detergent fiber and acid detergent fiber all decreased linearly when CS replaced AS. Effects on fiber digestion and milk fat may have been due to increasing fluctuation in ruminal pH and time the pH remained <6.0 when CS replaced AS. Milk protein content increased linearly with increasing CS, but there were no differences in protein yield. There were linear increases in apparent N efficiency and decreases in N excreted in urine and feces when CS replaced AS. Production was depressed on the diet highest in CS. Quadratic analysis indicated that milk and protein yields were maximal at dietary AS:CS ratios of, respectively, 37:13 and 31:19. No diet minimized N excretion without negatively affecting production. Diet C, with an AS:CS ratio of 24:27, was the best compromise between improved N efficiency and sustained production. Because CS is complementary with AS, it is recommended that CS be fed in AS-based diets to maintain milk yield while improving N utilization. 相似文献
3.
This study investigated the effects of plant species (red clover vs. timothy-meadow fescue) and forage maturity at primary harvest (early vs. late cut silage) on rumen fermentation, nutrient digestion, and nitrogen metabolism including omasal canal AA flow and plasma AA concentration in lactating cows. Five dairy cows equipped with rumen cannulas were used in a study designed as a 5 × 5 Latin square with 21-d periods. The diets consisted of early-cut and late-cut grass and red clover silage, respectively, and a mixture of late-cut grass and early-cut red clover silages given ad libitum with 9 kg/d of a standard concentrate. Grass silage dry matter intake tended to decrease but that of red clover silages tended to increase with advancing maturity. Milk yields were unchanged among treatments, milk protein and fat concentrations being lower for red clover than for grass silage diets. Rumen fluid pH was unchanged but volatile fatty acid and ammonia concentrations were higher for red clover than for grass silage diets. Intake of N, and omasal canal flows of total nonammonia N (NAN), microbial NAN, and dietary NAN were higher for red clover than for grass silage diets but were not affected by forage maturity. However, microbial NAN flow and amount of N excreted in the feces decreased with advancing maturity for grass diets but increased for red clover diets. Apparent ruminal N degradability of the diets was unchanged, but true ruminal N degradability decreased and efficiency of microbial synthesis increased with red clover diets compared with grass silage diets. Omasal canal flows of AA, except those for Met and Cys, were on average 20% higher for red clover than grass silage diets. Omasal canal digesta concentrations of Leu, Phe, branched-chain, and essential AA were higher but those of Met lower for red clover than for grass silage diets. Plasma AA concentrations, except for His (unchanged) and Met (lower), were higher for red clover than for grass diets. However, none of these AA-related variables were affected by forage maturity. Total digestibility of N and excretion of N in the urine were higher for red clover than for grass diets and decreased with advancing maturity. It was concluded that despite the higher total AA supply of cows fed red clover versus grass silage diets, further milk production responses on red clover diets were compromised by an inadequate supply of Met as evidenced by lower Met concentration in the AA profile of omasal digesta and plasma. 相似文献
4.
Eight ruminally cannulated Holstein cows that were part of a larger lactation trial were blocked by days in milk and randomly assigned to replicated 4 × 4 Latin squares to quantify effects of nonprotein N (NPN) content of alfalfa silage (AS) and red clover silage (RCS) on omasal nutrient flows. Diets, fed as total mixed rations, contained 50% dry matter from control AS (CAS), ammonium tetraformate-treated AS (TAS), late maturity RCS (RCS1), or early maturity RCS (RCS2). Silages differed in NPN and acid detergent insoluble N (% of total N): 50 and 4% (CAS); 45 and 3% (TAS); 27 and 8% (RCS1); 29 and 4% (RCS2). The CAS, TAS, and RCS2 diets had 36% high-moisture shelled corn and 3% soybean meal, and the RCS1 diet had 31% high-moisture shelled corn and 9% soybean meal. All diets contained 10% corn silage, 27% neutral detergent fiber, and 17 to 18% crude protein. Compared with RCS, feeding AS increased the supply of rumen-degraded protein and omasal flows of nonammonia N and microbial protein, which may explain the improved milk yield observed in the companion lactation trial. However, omasal flow of rumen-undegraded protein was 34% greater on RCS. Except for Arg, omasal flows of individual AA, branched-chain AA, nonessential AA, essential AA, and total AA did not differ between cows fed AS vs. RCS. Within AS diets, no differences in omasal AA flows were observed. However, omasal flows of Asp, Ser, Glu, Cys, Val, Ile, Tyr, Lys, total nonessential AA, and total AA all were higher in cows fed RCS1 vs. cows fed RCS2. In this trial, there was no advantage to reducing NPN content of hay-crop silage. 相似文献
5.
Benchaar C Petit HV Berthiaume R Ouellet DR Chiquette J Chouinard PY 《Journal of dairy science》2007,90(2):886-897
Four Holstein cows fitted with ruminal cannulas were used in a 4 × 4 Latin square design (28-d periods) with a 2 × 2 factorial arrangement of treatments to investigate the effects of addition of a specific mixture of essential oil compounds (MEO; 0 vs. 750 mg/d) and silage source [alfalfa silage (AS) vs. corn silage (CS)] on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition. Total mixed rations containing either AS or CS as the sole forage source were balanced to be isocaloric and isonitrogenous. In general, no interactions between MEO addition and silage source were observed. Except for ruminal pH and milk lactose content, which were increased by MEO supplementation, no changes attributable to the administration of MEO were observed for feed intake, nutrient digestibility, end-products of ruminal fermentation, microbial counts, and milk performance. Dry matter intake and milk production were not affected by replacing AS with CS in the diet. However, cows fed CS-based diets produced milk with lower fat and higher protein and urea N concentrations than cows fed AS-based diets. Replacing AS with CS increased the concentration of NH3-N and reduced the acetate-to-propionate ratio in ruminal fluid. Total viable bacteria, cellulolytic bacteria, and protozoa were not influenced by MEO supplementation, but the total viable bacteria count was higher with CS- than with AS-based diets. The apparent digestibility of crude protein did not differ between the AS and CS treatments, but digestibilities of neutral detergent fiber and acid detergent fiber were lower when cows were fed CS-based diets than when they were fed AS-based diets. Duodenal bacterial N flow, estimated using urinary purine derivatives and the amount of N retained, increased in cows fed CS-based diets compared with those fed AS-based diets. Feeding cows AS increased the milk fat contents of cis-9, trans-11 18:2 (conjugated linoleic acid) and 18:3 (n-3 fatty acid) compared with feeding cows CS. Results from this study showed limited effects of MEO supplementation on nutrient utilization, ruminal fermentation, and milk performance when cows were fed diets containing either AS or CS as the sole forage source. 相似文献
6.
Milk production and nitrogen excretion of dairy cows fed different amounts of protein and varying proportions of alfalfa and corn silage 总被引:1,自引:0,他引:1
Four trials were conducted to determine the effect of dietary protein amount on lactation performance and N utilization. Each trial used one of the following alfalfa-to-corn-silage ratios for the forage part of the diet: 100:0, 75:25, 50:50, and 25:75. All trials utilized 16 mid-lactation Holstein cows (days in milk averages ranging from 80 to 140 among trials) in a replicated 4 × 4 Latin square design with 3-wk periods, including 2 wk for adaptation and 1 wk for data collection. Diets consisted of 50% forage and 50% concentrate (dry matter basis) and were formulated to contain 15.00, 16.25, 17.50, or 18.75% protein in each trial. The analyzed protein content of the diets was 15.7, 16.9, 18.0, and 19.2% when averaged across trials. Milk yield was similar among dietary protein levels in each trial, ranging from 35.2 to 36.1 kg/d when data were combined across trials. Changes in milk fat and protein due to the protein content of the diet were small and inconsistent. Both milk urea nitrogen and blood urea nitrogen concentrations increased linearly as the protein content of the diet was increased, ranging from 9.9 to 13.1 and from 9.9 to 13.8 mg/dL, respectively, across trials. As dietary protein was increased from the lowest to the highest concentrations when data were combined and analyzed, mean fecal N concentration increased from 2.8 to 3.0%, and urinary N from 5.8 to 7.3 g/L. At the same time, mean total N excretion increased from 484 to 571 g/d, and conversion of intake N to milk N decreased from 0.27 to 0.22, resulting in an average change of 18%. Of the N excreted, urinary N accounted for an increasing proportion, ranging from 41 to 48%, as dietary protein was increased. Overall, based on N utilization as well as milk production, 17% protein in diets utilizing various proportions of alfalfa and corn silage as the forage source appeared sufficient for cows producing 38 kg/d of milk in this study. 相似文献
7.
Twenty-four multiparous Holstein-Friesian dairy cows were used in a replicated 4 × 4 Latin square changeover design experiment to test the effects of changing from ryegrass (Lolium perenne) silage to red clover (Trifolium pratense) silage in graded proportions on feed intakes, milk production, milk organoleptic qualities, and whole-body nitrogen partitioning. Four dietary treatments, comprising ad libitum access to 1 of 4 forage mixtures plus a standard allowance of 4 kg/d dairy concentrates, were offered. The 4 forage mixtures were, on a dry matter (DM) basis: 1) 100% grass silage, 2) 66% grass silage: 34% red clover silage, 3) 34% grass silage: 66% red clover silage, and 4) 100% red clover silage. In each of 4 experimental periods, there were 21 d for adaptation to diets and 7 d for measurements. There was an increase in both DM intakes and milk yields as the proportion of red clover in the diet increased. However, the increase in milk yield was not as great as the increase in DM intake, so that the efficiency of milk production, in terms of yield (kg) of milk per kg of DM intake, decreased. The concentrations of protein, milk fat, and the shorter chain saturated fatty acids decreased, whereas C18 polyunsaturated fatty acids (PUFA) and long-chain PUFA (C20+) increased as the proportion of red clover in the diet increased. There was little effect of dietary treatment on the organoleptic qualities of milk as assessed by taste panel analysis. There were no effects on the aroma of milk, on aftertaste, or overall liking of the milk. Milk was thicker and creamier in color when cows were fed grass silage compared with red clover silage. The flavor of milk was largely unaffected by dietary treatment. In conclusion, increasing the proportion of red clover in the diet of dairy cows increased feed intakes and milk yields, decreased the concentration of fat and protein in milk, increased PUFA for healthiness, and had little effect on milk organoleptic characteristics. 相似文献
8.
Glen A. Broderick 《Journal of dairy science》2018,101(2):1190-1205
Feeding trials were conducted with lactating cows and growing lambs to quantify effects of replacing dietary alfalfa silage (AS) with red clover silage (RCS) on nutrient utilization. The lactation trial had a 2 × 4 arrangement of treatments: AS or RCS fed with no supplement, rumen-protected Met (RPM), rumen-protected Lys (RPL), or RPM plus RPL. Grass silage was fed at 13% of dry matter (DM) with AS to equalize dietary neutral detergent fiber (NDF) and crude protein contents. All diets contained (DM basis) 5% corn silage and 16% crude protein. Thirty-two multiparous (4 ruminally cannulated) plus 16 primiparous Holstein cows were blocked by parity and days in milk and fed diets as total mixed rations in an incomplete 8 × 8 Latin square trial with four 28-d periods. Production data (over the last 14 d of each period) and digestibility and excretion data (at the end of each period) were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC). Although DM intake was 1.2 kg/d greater on AS than RCS, milk yield and body weight gain were not different. However, yields of fat and energy-corrected milk as well as milk content of fat, true protein, and solids-not-fat were greater on AS. Relative to AS, feeding RCS increased milk and energy-corrected milk yield per unit of DM intake, milk lactose content, and apparent N efficiency and reduced milk urea. Relative to AS, apparent digestibility of DM, organic matter, NDF, and acid detergent fiber were greater on RCS, whereas apparent and estimated true N digestibility were lower. Urinary N excretion and ruminal concentrations of ammonia, total AA, and branched-chain volatile fatty acids were reduced on RCS, indicating reduced ruminal protein degradation. Supplementation of RPM increased intake, milk true protein, and solids-not-fat content and tended to increase milk fat content. There were no silage × RPM interactions, suggesting that RPM was equally limiting on both AS and RCS. Supplementation of RPL did not influence any production trait; however, a significant silage × RPL interaction was detected for intake: RPL reduced intake of AS diets but increased intake of RCS diets. Duplicated metabolism trials were conducted with lambs confined to metabolism crates and fed only silage. After adaptation, collections of silage refusals and excreta were made during ad libitum feeding followed by feeding DM restricted to 2% of body weight. Intake of DM was not different when silages were fed ad libitum. Apparent digestibility of DM, organic matter, NDF, and hemicellulose was greater in lambs fed RCS on both ad libitum and restricted intake; however, acid detergent fiber digestibility was only greater at restricted intake. Apparent and estimated true N digestibility was substantially lower, and N retention was reduced, on RCS. Results confirmed greater DM and fiber digestibility in ruminants and N efficiency in cows fed RCS. Specific loss of Lys bioavailability on RCS was not observed. Based on milk composition, Met was the first-limiting AA on both silages; however, Met was not limiting based on production and nutrient efficiency. Depressed true N digestibility suggested impaired intestinal digestibility of rumen-undegraded protein from RCS. 相似文献
9.
Grass silage-based diets often result in poor nitrogen utilization when fed to dairy cows. Perennial ryegrass cultivars with high concentrations of water-soluble carbohydrates (WSC) have proven potential for correcting this imbalance when fed fresh, and have also been shown to increase feed intake, milk production, and N utilization. The possibility of achieving corresponding effects with silage-based diets was investigated in change-over experiments in an incomplete block design with 16 (yr 1) or 12 (yr 2) Swedish Red dairy cows in mid lactation. Measurements on N excretion and rumen parameters were performed on subgroups of 8 and 4 cows, respectively. In yr 1, 2 ryegrass cultivars (standard = Fennema; high-WSC = Aberdart) and 2 cuts (first and second) were compared. In all treatments, ryegrass silage was mixed 75/25 on a dry matter (DM) basis, with red clover silage before feeding out. In yr 2, 1 basic mixture from the different cuts of these 2 cultivars was used and experimental factors were red clover silage inclusion (25 or 50%) and sucrose addition (0 or 10%) on a silage DM basis. Differences in WSC concentration in the silage mixtures in yr 1 were minor, whereas the differences between cuts were more substantial: 100 compared with 111 g/kg of DM for first-cut silage and 39 compared with 47 g/kg of DM for second-cut silage. The silages fed in yr 2 had a WSC concentration of 115 or 102 g/kg of DM (25 or 50% red clover, respectively), but when sucrose was added WSC concentration reached 198 and 189 g/kg of DM, respectively. Milk production (kg/d) did not differ between treatments in either year. Red clover inclusion to 50% of silage DM increased milk protein. Nitrogen efficiency (milk N/feed N) increased from 0.231 to 0.254 with sucrose inclusion in yr 2 (average for the 2 red clover levels). Overall rumen pH was 5.99 and increased sucrose level did not affect pH level or daily pH pattern. Sucrose addition reduced neutral detergent fiber digestibility, particularly at higher inclusion rates of clover. Rumen pool of total purines did not differ between treatments, nor did protein production assessed from urinary allantoin. The NorFor feed evaluation model overestimated digestibility of neutral detergent fiber and N, but underestimated N excretion in feces. We concluded that addition of WSC to dairy cow diets at levels up to 3 kg of WSC per day (>14% of DM) does not dramatically affect cow performance. 相似文献
10.
A. Halmemies-Beauchet-Filleau A. Vanhatalo V. Toivonen T. Heikkilä M.R.F. Lee K.J. Shingfield 《Journal of dairy science》2014
Diets based on red clover silage (RCS) typically increase the concentration of polyunsaturated fatty acids (PUFA) in ruminant meat and milk and lower the efficiency of N utilization compared with grass silages (GS). Four multiparous Finnish Ayrshire cows (108 d postpartum) fitted with rumen cannulas were used in a 4 × 4 Latin square design with 21-d periods to evaluate the effect of incremental replacement of GS with RCS on milk production, nutrient digestion, whole-body N metabolism, and milk fatty acid composition. Treatments comprised total mixed rations offered ad libitum, containing 600 g of forage/kg of diet dry matter (DM), with RCS replacing GS in ratios of 0:100, 33:67, 67:33, and 100:0 on a DM basis. Intake of DM and milk yield tended to be higher when RCS and GS were offered as a mixture than when fed alone. Forage species had no influence on the concentration or secretion of total milk fat, whereas replacing GS with RCS tended to decrease milk protein concentration and yield. Substitution of GS with RCS decreased linearly whole-tract apparent organic matter, fiber, and N digestion. Forage species had no effect on total nonammonia N at the omasum, whereas the flow of most AA at the omasum was higher for diets based on a mixture of forages. Replacing GS with RCS progressively lowered protein degradation in the rumen, increased linearly ruminal escape of dietary protein, and decreased linearly microbial protein synthesis. Incremental inclusion of RCS in the diet tended to lower whole-body N balance, increased linearly the proportion of dietary N excreted in feces and urine, and decreased linearly the utilization of dietary N for milk protein synthesis. Furthermore, replacing GS with RCS decreased linearly milk fat 4:0 to 8:0, 14:0, and 16:0 concentrations and increased linearly 18:2n-6 and 18:3n-3 concentrations, in the absence of changes in cis-9 18:1, cis-9, trans-11 18:2, or total trans fatty acid concentration. Inclusion of RCS in the diet progressively increased the apparent transfer of 18-carbon PUFA from the diet into milk, but had no effect on the amount of 18:2n-6 or 18:3n-3 at the omasum recovered in milk. In conclusion, forage species modified ruminal N metabolism, the flow of AA at the omasum, and whole-body N partitioning. A lower efficiency of N utilization for milk protein synthesis with RCS relative to GS was associated with decreased availability of AA for absorption, with some evidence of an imbalance in the supply of AA relative to requirements. Higher enrichment of PUFA in milk for diets based on RCS was related to an increased supply for absorption, with no indication that forage species substantially altered PUFA bioavailability. 相似文献
11.
Effects of tallow in diets based on corn silage or alfalfa silage on digestion and nutrient use by lactating dairy cows 总被引:3,自引:0,他引:3
Six multiparous Holstein cows (average 31 days in milk; 36.3 kg/d of milk) fitted with ruminal cannulas were used in a 6 x 6 Latin square with 21-d periods to investigate the effects of diets that varied in forage source and amount of supplemental tallow. Isonitrogenous diets in a 2 x 3 factorial arrangement were based on either high corn silage (40:10 corn silage to alfalfa silage, % of dry matter) or high alfalfa silage (10:40 corn silage to alfalfa silage, % of dry matter) and contained 0, 2, or 4% tallow. Intakes of dry matter and total fatty acids were lower when cows were fed the high corn silage diet. Tallow supplementation linearly decreased dry matter intake. Milk yield was unaffected by diet; yields of milk fat and 3.5% fat-corrected milk were higher for the high alfalfa silage diet but were unaffected by tallow. Milk fat percentage was higher for the high alfalfa silage and tended to decrease when tallow was added to the high corn silage diet. Contents of trans-C18:1 isomers in milk fat were increased by high corn silage and tallow, and tended to be increased more when tallow was fed in the high corn silage diet. Ruminal pH and acetate:propionate were lower when high corn silage was fed. Ruminal acetate:propionate decreased linearly as tallow increased; the molar proportion of acetate was decreased more when tallow was added to the high corn silage diet. Ruminal liquid dilution rates were higher for the alfalfa silage diet; ruminal volume and solid passage rates were similar among diets. Total tract apparent digestibilities of dry matter, organic matter, crude protein, starch, energy, and total fatty acids were unaffected by diet. Digestibilities of neutral detergent fiber, acid detergent fiber, hemicellulose, and cellulose were lower when high corn silage was fed. The high alfalfa silage diet increased intakes of metabolizable energy and N, and increased milk energy and productive N. Tallow decreased the amount of N absorbed but had few other effects on utilization of energy or N. Tallow linearly increased concentrations of nonesterified fatty acids and cholesterol in plasma; cholesterol was increased by high alfalfa silage. Overall, forage source had more pronounced effects on production and metabolism than did tallow supplementation. Few interactions between forage source and tallow supplementation were detected except that ruminal fermentation and milk fat content were affected more negatively when tallow was fed in the high corn silage diet. 相似文献
12.
Krizsan SJ Broderick GA Muck RE Promkot C Colombini S Randby AT 《Journal of dairy science》2007,90(10):4793-4804
The objective of this study was to determine if feeding roasted corn would improve production and nutrient utilization when supplemented to lactating cows fed 1 of 3 different alfalfa silages (AS). Forty-two lactating Holstein cows (6 fitted with ruminal cannulas) averaging 77 d in milk and 43 kg of milk/d pretrial were assigned to 2 cyclic changeover designs. Treatments were AS ensiled in bag, bunker, or O2-limiting tower silos and supplemented with ground shelled corn (GSC) or roasted GSC (RGSC). Silages were prepared from second-cutting alfalfa, field-wilted an average of 24 h, and ensiled over 2 d. Production and N utilization were evaluated in 36 cows during four 28-d periods, and ruminal fermentation was evaluated with 6 cows during five 21-d periods. Experimental diets contained 40% AS, 15% corn silage, and 35% of either GSC or RGSC on a dry matter basis. No significant interactions between AS and corn sources were detected for any production trait. Although the chemical composition of the 3 AS was similar, feeding AS from the O2-limited tower silo elicited positive production responses. Yields of 3.5% fat-corrected milk and fat were increased 1.7 kg/d and 150 g/d, and milk fat content was increased 0.3% when cows were fed diets based on AS from the O2-limiting silo compared with the other 2 silages. The responses in milk fat were paralleled by an average increase in acid detergent fiber digestibility of 270 g/d for cows fed AS from the O2-limiting tower silo. However, ruminal concentrations of lipogenic volatile fatty acids were unchanged with AS source. Cows fed RGSC consumed 0.6 kg/d more dry matter and yielded 30 g/d more protein and 50 g/d more lactose than cows fed GSC diets. There was no evidence of increased total tract digestibility of organic matter or starch, or reduced ruminal NH3 concentration, when feeding RGSC. Free amino acids increased, and isovalerate decreased in rumen fluid from cows fed RGSC diets. However, responses in production with roasted corn were mainly due to increased dry matter intake, which increased the supply of energy and nutrients available for synthesis of milk and milk components. 相似文献
13.
Effects of physically effective fiber on digestion and milk production by dairy cows fed diets based on corn silage 总被引:1,自引:0,他引:1
Effects of physically effective (pe) neutral detergent fiber (NDF) content of dairy cow diets on nutrient intakes, site and extent of digestion, microbial protein synthesis and milk production were evaluated in a double 3 x 3 Latin square design using 6 lactating dairy cows with ruminal and duodenal cannulas. During each of 3 periods, cows were offered 1 of 3 diets that were chemically similar but varied in peNDF content (high, medium, and low) by altering corn silage particle length. The peNDF contents were determined using the Penn State Particle Separator and were 11.5, 10.3, and 8.9%, for the high, medium, and low diets, respectively, and the physical effectiveness factors for the long, medium, and fine silages were 84.1, 72.6, and 67.2%, respectively. Increased forage particle length increased intake of peNDF but did not affect intakes of nutrients including dry matter, NDF, starch, and nitrogen. Except for starch, apparent digestibilities of nutrients in the total tract were linearly increased with increasing dietary peNDF. Fiber digestion was affected by dietary peNDF to a greater extent than were the other nutrients. However, increased digestibility due to increased dietary peNDF did not significantly improve milk production or milk composition. Increased dietary peNDF also increased numerically rumen microbial protein synthesis due to increased amount of organic matter fermented in the rumen. These results indicate that increasing the peNDF content of a corn silage based diet improves digestibility, especially digestibility of fiber, in the total tract. Dietary particle size, expressed as peNDF, is positively associated with nutrient digestibility when level of peNDF in the diet is low. 相似文献
14.
M.R.F. Lee V.J. Theobald J.K.S. Tweed A.L. Winters N.D. Scollan 《Journal of dairy science》2009,92(3):1136-1147
Polyphenol oxidase (PPO) in conditioned red clover (ensiled or cut and crushed) reduces both proteolysis and lipolysis in the herbage, which has led to increases in N use efficiency and polyunsaturated fatty acid (PUFA) content of milk when offered to dairy cows. In damaged plant cells, PPO is activated and binds protein through the formation of protein-bound phenols. This study investigated a) whether freshly cut red clover could increase N use efficiency and milk PUFA concentrations in dairy cows or whether PPO enzymes require prior activation before feeding to elicit a response, and b) apparent whole-tract amino acid digestibility to help determine the effect of PPO on amino acid utilization. Six multiparous Holstein × Friesian dairy cows in mid-lactation were allocated at random to 1 of 3 dietary treatments in a 3 × 3 Latin square: a control treatment of grass (low PPO, G); red clover (high PPO, RC), and conditioned red clover (high fully activated PPO, CRC). The CRC herbage was cut and chopped in the field and then transported with the G and RC herbages to the animal house. Each period consisted of a 2-wk adaptation to diet and a week of measuring dietary effects (N balance and milk collection). The PPO activity was greatest in the RC treatment as fed, whereas activation of latent PPO enzyme and protein-bound phenol levels were greatest in the CRC diet. Dry matter and total fatty acid intakes were comparable across treatments (18.8 kg/d and 550 g/d, respectively). Milk yields and total fatty acid content were similar across treatments (32.6 kg/d and 34.8 mg/mL, respectively). Cows offered either RC or CRC had greater levels of protein, C18 PUFA and total long-chain PUFA in their milk than animals offered grass with no difference between RC and CRC. Nitrogen intakes, and output in milk, urine, and feces were greater in cows offered the 2 red clover treatments than G, with no difference between RC and CRC. However, there were no differences in N use efficiency among diets as measured by the proportion of feed N converted into milk N, possibly as the result of the excessive supply of N with the red clover diets. Amino acid apparent whole-tract digestibilities were greater when on RC than G diets and intermediate when on CRC for all amino acids, with the exception of Met, which was reduced in cows on both red clover diets compared with G. It is proposed that the PPO trait could show more benefit to ruminants if red clover was fed in combination with lesser N-containing forages or if red clover was bred to contain less N. 相似文献
15.
M. Savari M. Khorvash H. Amanlou G.R. Ghorbani E. Ghasemi M. Mirzaei 《Journal of dairy science》2018,101(2):1111-1122
This study was conducted to investigate the effects of the ratio of rumen-degradable protein (RDP) to rumen-undegradable protein (RUP) and corn processing method on production performance, nitrogen (N) efficiency, and feeding behavior of high-producing Holstein dairy cows. Twelve multiparous Holstein cows (second parity; milk yield = 48 ± 3 kg/d) were assigned to a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Factor 1 was corn processing method [ground corn (GC) or steam flaked corn (SFC) with a flake density of about 390 g/L], and factor 2 was RDP:RUP ratio [low ratio (LR) = 60:40; high ratio (HR) = 65:35] based on crude protein (%). The crude protein concentrations were kept constant across the treatments (16.7% of DM). No significant interactions of main treatment effects occurred for lactation performance data. Cows fed 2 different RDP:RUP ratios exhibited similar dry matter intake (DMI), but those fed SFC showed decreased feed intake compared with those receiving GC (25.1 ± 0.48 vs. 26.2 ± 0.47 kg/d, respectively). Cows fed HR diets produced more milk than did those fed LR diets (44.4 ± 1.05 vs. 43.2 ± 1.05 kg/d, respectively). Milk fat content decreased but milk protein content increased in cows fed SFC compared with those fed GC. Feed efficiency (i.e., milk yield/DMI) was enhanced with increasing ratio of RDP:RUP (1.68 ± 0.04 vs. 1.74 ± 0.04 for LR and HR, respectively). Apparent N efficiency was higher in cows fed HR than in those fed LR (30.4 ± 0.61 vs. 29.2 ± 0.62, respectively). Compared with cows fed the GC-based diet, those receiving SFC exhibited lower values of N intake, N-NH3 concentration, and fecal N excretion. Cows receiving SFC-based diets spent more time ruminating (min/kg of DMI) than did those fed GC. Although these results showed no interaction effects of RDP:RUP ratio and corn processing method on performance, higher RDP:RUP ratios and ground corn can be effective feeding strategies for feed to lactating cows receiving high-concentrate diets. 相似文献
16.
This study examined the effects of red clover or grass silages cut at 2 stages of growth on feed intake, cell wall digestion, and ruminal passage kinetics in lactating dairy cows. Five dairy cows equipped with rumen cannulas were used in a study designed as a 5 × 5 Latin square with 21-d periods. Diets consisted of early-cut and late-cut grass and red clover silages and a mixture of late-cut grass and early-cut red clover silages offered ad libitum. All diets were supplemented with 9 kg/d of concentrate. Ruminal digestion and passage kinetics were assessed by the rumen evacuation technique. Apparent total-tract digestibility was determined by total fecal collection. The silage dry matter intake was highest when the mixed forage diet was fed and lowest with the early-cut red clover diet. Delaying the harvest tended to decrease DMI of grass and increase that of red clover. The intake of neutral detergent fiber (NDF) and potentially digestible NDF (pdNDF) was lower but the intake of indigestible NDF (iNDF) was higher for red clover diets than for grass diets. The rumen pool size of iNDF and the ratio of iNDF to pdNDF in the rumen contents were larger, and pool sizes of NDF and pdNDF were smaller for red clover than for grass silage diets. Outflow of iNDF and the ratio of iNDF to pdNDF in digesta entering the omasal canal were larger, and the outflow of pdNDF was smaller for red clover than for grass silage diets. The digestion rate (kd) of pdNDF was faster for red clover diets than for grass silage diets. Delaying the harvest decreased kd for grass but increased it for red clover silage diets. Observed differences in fiber characteristics of red clover and grass silages were reflected in ruminal digestion and passage kinetics of these forages. The low intake of early-cut red clover silage could not be explained by silage digestibility, fermentation quality, or rumen fill, but was most likely related to nutritionally suboptimal composition because inclusion of moderate quality grass silage improved silage intake. Increasing the maturity of ensiled red clover does not seem to affect silage dry matter intake as consistently as that of grasses. 相似文献
17.
Eight ruminally cannulated multiparous Holstein cows that were part of a larger production trial were used to study the effects of varying dietary ratios of alfalfa silage (AS) to corn silage (CS) on omasal flow of nutrients and microbial protein. Cows were blocked by DIM and randomly assigned to 2 replicated 4 × 4 Latin squares (28-d periods). Diets fed contained (dry matter basis): A) 51% AS, 43% rolled high-moisture shelled corn (HMSC), and 3% solvent soybean meal (SSBM); B) 37% AS, 13% CS, 39% HMSC, and 7% SSBM; C) 24% AS, 27% CS, 35% HMSC, and 12% SSBM; or D) 10% AS, 40% CS, 31% HMSC, and 16% SSBM. Crude protein (CP) contents were 17.2, 16.9, 16.6, and 16.2% for diets A, B, C, and D. All 4 diets were high in energy, averaging 49% nonfiber carbohydrates and 24% neutral detergent fiber. Total microbial nonammonia nitrogen flow was lower on diet D (423 g/d) compared with diets A (465 g/d), B (479 g/d), and C (460 g/d). A significant quadratic effect indicated that microbial protein synthesis was maximal at 38% AS. Supply of rumen-degraded protein decreased linearly from 3,068 g/d (diet A) to 2,469 g/d (diet D). Omasal flow of rumen-undegraded protein did not differ among diets and averaged 1,528 g/d. However, when expressed as a percentage of dry matter intake, rumen-undegraded protein increased linearly from 5.59% (diet A) to 6.13% (diet D), probably because CP from SSBM was more resistant to degradation than CP from AS. Essential AA flow was lowest on diet D, and Lys flow tended to be lower on diet D, which may explain the lower milk and protein yields observed on that diet. 相似文献
18.
Utilization and partition of dietary nitrogen in dairy cows fed grass silage-based diets 总被引:2,自引:0,他引:2
Data from 207 production trials (998 treatment means) were used to study the effects of animal and dietary characteristics on the efficiency of N utilization for milk protein production, and on fecal N, urinary N, and total manure N output. The average efficiency of transferring dietary N to milk N (MNE; milk N/N intake) was 277 (SD = 36.0) g/kg. Nitrogen efficiency was poorly related to milk yield. Dietary concentrations of crude protein (CP) and protein balance in the rumen (PBV) were the best single predictors of MNE. Dietary CP concentration explained variation in MNE better than did N intake. Bivariate models with PBV or metabolizable protein (MP) explained the variation better than CP alone. The effects of protein feeding parameters on MNE were consistent among data subsets from studies investigating the effects of the amount and protein concentration of concentrate supplement, silage digestibility, silage fermentation quality, or substitution of grass silage with legume silage. The model with total dry matter and N intakes as independent variables explained fecal, urinary, and total manure N output more precisely than N intake alone. The model of fecal N output suggested that the true digestibility of dietary N was 0.91, and that metabolic and endogenous N was the major component in fecal N. The proportion of urine N in manure N was strongly related to dietary CP concentration. Including the concentration of dietary carbohydrates only slightly improved the models, indicating that the most effective strategy to improve MNE and to decrease N losses in manure, especially in urine, is to avoid feeding diets with excessively high CP concentration and especially excess ruminally degradable CP. 相似文献
19.
Rego OA Regalo SM Rosa HJ Alves SP Borba AE Bessa RJ Cabrita AR Fonseca AJ 《Journal of dairy science》2008,91(7):2736-2743
The effects of supplementation with grass silage and replacement of some corn in the concentrate with soybean meal (SBM) on milk production, and milk fatty acid (FA) profiles were evaluated in a replicated 4 × 4 Latin square study using 16 dairy cows grazing pasture composed of ryegrass, Kentucky bluegrass, and white clover. Each experimental period lasted for 3 wk. The 4 dietary treatments were PC, 20 h of access to grazing pasture, supplemented with 6 kg/d of corn-based concentrate mixture (96% corn; C); PCSB, 20 h of access to grazing pasture, supplemented with 6 kg/d of corn- and SBM-based concentrate mixture (78% corn and 18% SBM; CSB); SC, 7 h of access to grazing pasture during the day and 13 h of ad libitum access to grass silage at night, supplemented with 6 kg/d of C concentrate; and SCSB, 7 h of access to grazing pasture during the day and 13 h of ad libitum access to grass silage at night, supplemented with 6 kg/d of CSB concentrate. The concentrate mixtures were offered twice each day in the milking parlor and were consumed completely. Grass silage supplementation reduced dietary crude protein and concentration of total sugars, and dietary SBM inclusion increased dietary crude protein concentration and decreased dietary starch concentration. Milk yield and energy-corrected milk were increased by SBM supplementation of cows with access to grass silage. Milk protein concentration was lower in cows offered grass silage, regardless of whether SBM was fed. Dietary SBM inclusion tended to increase milk fat concentration. Plasma urea N was reduced by silage feeding and increased by SBM supplementation. Supplementation with grass silage overnight could represent a useful strategy for periods of lower pasture availability. Dietary inclusion of SBM in solely grazing cows had no effects on milk production and composition, exacerbated the inefficient capture of dietary N, and increased diet cost. Grass silage supplementation affected milk FA profiles, increasing both the FA derived from de novo synthesis and those derived from rumen microbial biomass, and decreasing the sum of C18 FA (mostly derived from diet or from mobilization of adipose tissue reserves). Milk fat concentrations of conjugated linoleic acid cis-9, trans-11, vaccenic acid (18:1 trans-11), and linolenic acid (18:3n-3) were unaffected by grass silage supplementation, suggesting that partial replacement of pasture by unwilted grass silage does not compromise the dietary quality of milk fat for humans. 相似文献
20.
A meta-analysis was performed to explore the correlation between energy and nitrogen efficiency of dairy cows, and to study nutritional and animal factors that influence these efficiencies, as well as their relationship. Treatment mean values were extracted from 68 peer-reviewed studies, including 306 feeding trials. The main criterion for inclusion of a study in the meta-analysis was that it reported, or permitted calculation of, energy efficiency (Eeff; energy in milk/digestible energy intake) and nitrogen efficiency (Neff; nitrogen in milk/digestible nitrogen intake) at the digestible level (digestible energy or digestible protein). The effect of nutritional and animal variables, including neutral detergent fiber, acid detergent fiber (ADF), digestible energy, digestible protein, proportion of concentrate (PCO), dry matter intake, milk yield, days in milk, and body weight, on Eeff, Neff, and the Neff:Eeff ratio was analyzed using mixed models. The interstudy correlation between Eeff and Neff was 0.62, whereas the intrastudy correlation was 0.30. The higher interstudy correlation was partly due to milk yield and dry matter intake being present in both Eeff and Neff. We, therefore, also explored the Neff:Eeff ratio. Energy efficiency was negatively associated with ADF and PCO, whereas Neff was negatively associated with ADF and digestible energy. The Neff:Eeff ratio was affected by ADF and PCO only. In conclusion, the results indicate a possibility to maximize feed efficiency in terms of both energy and nitrogen at the same time. In other words, an improvement in Eeff would also mean an improvement in Neff. The current study also shows that these types of transverse data are not sufficient to study the effect of animal factors, such as days in milk, on feed efficiency. Longitudinal measurements per animal would probably be more appropriate. 相似文献