首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
ZnO thin films without and with Ti buffer layer were prepared on Si and glass substrates by radio frequency (RF) magnetron sputtering. The effects of Ti buffer layer with different sputtering time on the microstructure and optical properties of ZnO thin films had been investigated by means of X-ray diffraction (XRD), energy dispersive spectrometer, X-fluorescence spectrophotometer and ultraviolet–visible spectrophotometer. The XRD results showed that the full-width at half-maximum (FWHM) for the ZnO (002) diffraction peak gradually decreased with the increase of sputtering time of Ti buffer layer, indicating that the crystalline quality of ZnO thin films was improved. The UV peak located at 390 nm, two blue peaks located at about 435 and 487 nm, two green peaks located at about 525 and 560 nm were observed from PL spectra. The PL spectra showed that the strongest blue light emission of ZnO films was obtained from Ti buffer layer with the sputtering time of 10 min. Meanwhile, the origins of the emission peaks were discussed through the Gaussian deconvolution. We also studied the optical band gaps.  相似文献   

2.
We demonstrated the growth of wurtzite-crystalline beryllium oxide (BeO) thin films on GaN and ZnO substrates using atomic layer deposition (ALD). Single-crystalline BeO were epitaxially grown on GaN. Despite the inherently large lattice mismatch of BeO and GaN atoms, the 6/5 and 7/6 domain-matched structures dramatically reduced the residual strain in BeO thin films. On the other hand, the lattice mismatch of BeO and ZnO was not effectively accommodated in the mixed domains. X-ray diffraction (XRD) confirmed the in-plane crystallization of BeO-on-substrates in the (002){102}BeO||(002){102}Sub orientation and relaxation degrees of 20.8% (GaN), 100% (ZnO). The theoretical critical thicknesses of BeO for strain relaxation were 2.2 μm (GaN) and 1.6 nm (ZnO), calculated using a total film energy model. Transmission electron microscopy (TEM) and Fourier-filtered imaging supported the bonding configuration and crystallinity of wurtzite BeO thin films on GaN and ZnO substrates.  相似文献   

3.
Large-scale uniform one-dimensional ZnO nanostructures were fabricated through thermal evaporation via the vapor solid mechanism on different substrates. The effects of Si (100), Si (111), SiO2 and sapphire substrates with constant oxygen treatment on the morphology and diameter of ZnO nanostructures were investigated. It is found that the type of substrate has a great effect on the shape and diameter of the synthesized nanowires, nanorods, and nanotubes. It is noticed that the size and dimensionality were the most influential parameters on both structural and optical properties of the grown ZnO nanostructures. X-ray diffraction analysis confirms the stability of the wurtzite crystal structure for all grown ZnO nanostructures and the preferred orientation is substrate dependent. The crystallinity as well as the defects within the crystal lattice of the grown ZnO nanostructures was studied through Raman spectroscopy. The photoluminescence spectra of ZnO nanostructures grown on Si (100), Si (111), SiO2 and sapphire substrates showed two peaks at a near-band-edge (NBE) emission in the ultraviolet region and a broad deep-level emission (DLE) around the green emission.  相似文献   

4.
《Ceramics International》2022,48(4):5239-5245
Ta-doped Bi3.25La0.75Ti3O12(BLTT)/ZnO films were fabricated on Pt(111)/Ti/SiO2/Si substrates by a magnetron sputtering method. Firstly, ZnO crystal thin films were grown on the substrates by a reactive sputtering method. Then, BLTT thin films were deposited on the ZnO layers at room temperature and post-annealed at 600 °C. The micromorphology, ferroelectric and dielectric properties of BLTT/ZnO films were analyzed. The XRD analysis shows that ZnO buffer layer significantly reduces the crystallization temperature of BLTT thin film. The TEM results show that lamellar BLTT grains are grown on ZnO layer at a certain angle with few elements diffusion at the interface of ZnO phase and Bi4Ti3O12 phase. The ferroelectric properties indicate that BLTT/ZnO films exhibit different remanent polarization and coercive fields under electric field with different directions. The novel mechanism of tailoring ferroelectric properties may open new possibilities for designing special ferroelectric devices.  相似文献   

5.
Two-step growth of ZnO by atomic layer deposition at low temperatures was performed to grow quality ZnO films on silicon substrates: first, the growth of a buffer layer at 130 ?C and second, the growth of the main layer at 210 ?C. Structural and optical properties of the ZnO films deposited on ZnO-buffer/Si(111) were investigated as a function of buffer layer thickness. The films showed a strong UV emission at 380 nm and a weak green emission at 520–570 nm. The ZnO films deposited on a 327 å buffer layer showed overall the best surface morphology and structural and optical properties.  相似文献   

6.
In this paper, we report the studies on the hetero-epitaxial growth of wurtzite indium nitride (InN) thin films on oxide buffer layer by RF metal-organic molecular beam epitaxy (RF-MOMBE) system. Oxide buffer layer was pre-sputtered using RF sputtering technique. The structural properties and surface morphology were investigated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). We also investigated the optical properties by temperature-dependence photoluminescence (PL). Near-infrared emission peak centered at 0.75 eV was observed from PL measurement. The irregular and asymmetric PL line shape was caused by absorbed moisture and surface electron accumulation in InN films. According to the fitting results of PL spectra measured at 20 K, we could estimate the bandgap and Fermi level is 0.65 eV and 113 meV, which confirm to previous reports. Our results reveal that the oxide thin film could be a suitable buffer layer for engineering the growth of InN on sapphire wafer, and it might be also applicable for other lattice-mismatched III-V hetero-epitaxial systems.  相似文献   

7.
This study reports on the deposition of highly transparent, n-type ZnO thin films on glass substrate at 450?°C using spray pyrolysis processing, with the simultaneous insertion of yttrium (Y) at different percentages (0, 2, 5, 7?at%) as a dopant. The effect of Y doping on the structure, morphology and optical properties of Y doped ZnO (ZnO:Y) was investigated for optoelectronic applications. The obtained thin films were characterized by means of X-ray diffraction, field-emission scanning electron microscopy (FESEM), UV–visible absorbance measurements, photoluminescence (PL) and cathodoluminescence (CL) spectroscopy. The as-prepared films exhibit well-defined hexagonal wurtzite structure grown along [002]. Field emission scanning electron microscope micrographs of the pure ZnO and ZnO:Y showed that the films acquired a dominance of hexagonal-like grains, the morphology was influenced by Y incorporation. All the films showed high transparency in the visible domain with an average transmittance of 83%. The band gap energy, Eg, increased from 3.12?eV to 3.18?eV by increasing the Y doping concentration up to 5?at% and then decreased to 3.15?eV for 7?at% Y content. The PL and CL measurements reveal a strong ultraviolet (UV) emission, suggesting that the as-prepared ZnO:Y thin films can potentially be used in optoelectronic devices.  相似文献   

8.
Highly efficient room-temperature ultraviolet (UV) luminescence is obtained in heterostructures consisting of 10-nm-thick ultrathin ZnO films grown on Si nanopillars fabricated using self-assembled silver nanoislands as a natural metal nanomask during a subsequent dry etching process. Atomic layer deposition was applied for depositing the ZnO films on the Si nanopillars under an ambient temperature of 200°C. Based on measurements of photoluminescence (PL), an intensive UV emission corresponding to free-exciton recombination (approximately 3.31 eV) was observed with a nearly complete suppression of the defect-associated, broad-range visible emission peak. As compared to the ZnO/Si substrate, the almost five-times-of-magnitude enhancement in the intensity of PL, which peaked around 3.31 eV in the present ultrathin ZnO/Si nanopillars, is presumably attributed to the high surface/volume ratio inherent to the Si nanopillars. This allowed considerably more amount of ZnO material to be grown on the template and led to markedly more efficient intrinsic emission.  相似文献   

9.
《Ceramics International》2016,42(14):15849-15854
Zinc-sulfide (ZnS) thin films 200 nm-thick with various crystal features were fabricated using RF sputtering onto patterned sapphire substrates with and without ultrathin homo-ZnS and hetero-zinc oxide (ZnO) ultrathin buffer layers (approximately 45 nm in thickness). Microstructural analyses revealed that the crystalline ZnS thin films with a columnar grain feature were deposited on the various ultrathin buffer layers-coated substrates through RF sputtering. The surface morphology of the ZnS thin films became rough and the crystal defect density of the ZnS thin films increased when the ZnS thin films were grown on the buffer layers. Comparatively, the rugged and island-like ZnO buffer layer engendered the crystal growth of the ZnS thin film with a higher degree of structural disorder than that of the crystal growth on the ZnS buffer layer. An increased crystal defect number together with the highly rugged film surface of the ZnS thin film buffered with ultrathin ZnO layers efficiently enhanced the photoactivity of the 200 nm-thick ZnS thin film in this study.  相似文献   

10.
ZnO薄膜的制备及其性能   总被引:1,自引:0,他引:1  
用脉冲激光沉积(PLD)法在SiO2基片上制备了ZnO薄膜和Zn1-xMnxO薄膜。X射线衍射、原子力显微镜、紫外-可见分光光度计对ZnO薄膜的测试结果表明:薄膜具有(103)面的择优取向,表面比较平坦;SiO2基片上制备的薄膜在387nm附近存在明显的吸收边,且薄膜的吸收对基片温度变化不明显。通过对Zn1-xMnxO薄膜的吸收光谱分析得出:Mn离子的掺杂改变了ZnO薄膜的禁带宽度,随Mn离子的掺杂量的增加,薄膜禁带宽度增加;薄膜的光吸收也从直接跃迁过渡为间接跃迁过程。  相似文献   

11.
ZnO thin films were successfully deposited on SiO2/Si substrate by sol–gel technology. The as-grown ZnO thin films were annealed under an ambient atmosphere from 600 to 900 °C by rapid thermal annealing (RTA) process. X-ray diffraction and scanning electron microscopy analyses reveal the physical structures of ZnO thin films. From PL measurement, two ultraviolet (UV) luminescence bands were obtained at 375 and 380 nm, and the intensity became stronger when the annealing temperature was increased. The strongest UV light emission appeared at annealing temperature of 900 °C. The chemical bonding state in ZnO films was investigated by using X-ray photoelectron spectrum. The mechanism of UV emission was also discussed.  相似文献   

12.
宿世臣  胡灿栋  牛犇 《广州化工》2011,39(9):10-11,26
利用等离子体分子束外延(P-MBE)设备在Si(111)衬底上制备了高质量的ZnO薄膜.通过扫描电镜观察了ZnO薄膜的表面形貌为的六角结构.X射线衍射谱显示ZnO薄膜为C轴择优取向的,ZnO(002)取向X射线衍射峰的最大半宽度仅0.18°.并通过室温和变温发光谱对ZnO薄膜的发光特性进行了研究.在低温下ZnO的发光以...  相似文献   

13.
《Ceramics International》2022,48(4):5066-5074
We studied the morphological nature of various thin films such as silicon carbide (SiC), diamond (C), germanium (Ge), and gallium nitride (GaN) on silicon substrate Si(100) using the pulsed laser deposition (PLD) method and Monte Carlo simulation. We, for the first time, systematically employed the visibility algorithm graph to meticulously study the morphological features of various PLD grown thin films. These thin-film morphologies are investigated using random distribution, Gaussian distribution, patterned heights, etc. The nature of the interfacial height of individual surfaces is examined by a horizontal visibility graph (HVG). It demonstrates that the continuous interfacial height of the silicon carbide, diamond, germanium, and gallium nitride films are attributed to random distribution and Gaussian distribution in thin films. However, discrete peaks are obtained in the brush and step-like morphology of germanium thin films. Further, we have experimentally verified the morphological nature of simulated silicon carbide, diamond, germanium, and gallium nitride thin films were grown on Si(100) substrate by pulsed laser deposition (PLD) at elevated temperature. Various characterization techniques have been used to study the morphological, and electrical properties which confirmed the different nature of the deposited films on the Silicon substrate. Decent hysteresis behavior has been confirmed by current-voltage (IV) measurement in all the four deposited films. The highest current has been measured for GaN at ~60 nA and the lowest current in SiC at ~30 nA level which is quite low comparing with the expected signal level (μA). The HVG technique is suitable to understand surface features of thin films which are substantially advantageous for the energy devices, detectors, optoelectronic devices operating at high temperatures.  相似文献   

14.
Zinc sulfide [ZnS] thin films were deposited on glass substrates using radio frequency magnetron sputtering. The substrate temperature was varied in the range of 100°C to 400°C. The structural and optical properties of ZnS thin films were characterized with X-ray diffraction [XRD], field emission scanning electron microscopy [FESEM], energy dispersive analysis of X-rays and UV-visible transmission spectra. The XRD analyses indicate that ZnS films have zinc blende structures with (111) preferential orientation, whereas the diffraction patterns sharpen with the increase in substrate temperatures. The FESEM data also reveal that the films have nano-size grains with a grain size of approximately 69 nm. The films grown at 350°C exhibit a relatively high transmittance of 80% in the visible region, with an energy band gap of 3.79 eV. These results show that ZnS films are suitable for use as the buffer layer of the Cu(In, Ga)Se2 solar cells.  相似文献   

15.
In this study, pulsed laser ablation technique, also known as pulsed laser deposition (PLD), is used to design and grow zinc oxide (ZnO) nanostructures (nanoworms, nanowalls, and nanorods) by template/seeding approach for gas-sensing applications. Conventionally, ZnO nanostructures used for gas-sensing have been usually prepared via chemical route, where the 3D/2D nanostructures are chemically synthesized and subsequently plated on an appropriate substrate. However, using pulsed laser ablation technique, the ZnO nanostructures are structurally designed and grown directly on a substrate using a two-step temperature-pressure seeding approach. This approach has been optimized to design various ZnO nanostructures by understanding the effect of substrate temperature in the 300-750°C range under O2 gas pressure from 10-mTorr to 10 Torr. Using a thin ZnO seed layer as template that is deposited first at substrate temperature of ~300°C at background oxygen pressure of 10 mTorr on Si(100), ZnO nanostructures, such as nanoworms, nanowalls, and nanorods (with secondary flower-like growth) were grown at substrate temperatures and oxygen background pressures of (550°C and 2 Torr), (550°C and 0.5 Torr), and (650°C and 2 Torr), respectively. The morphology and the optical properties of ZnO nanostructures were examined by Scanning Electron Microscope (SEM-EDX), X-ray Diffraction (XRD), and photoluminescence (PL). The PLD-grown ZnO nanostructures are single-crystals and are highly oriented in the c-axis. The vapor-solid (VS) model is proposed to be responsible for the growth of ZnO nanostructures by PLD process. Furthermore, the ZnO nanowall structure is a very promising nanostructure due to its very high surface-to-volume ratio. Although ZnO nanowalls have been grown by other methods for sensor application, to this date, only a very few ZnO nanowalls have been grown by PLD for this purpose. In this regard, ZnO nanowall structures are deposited by PLD on an Al2O3 test sensor and assessed for their responses to CO and ethanol gases at 50 ppm, where good responses were observed at 350 and 400°C, respectively. The PLD-grown ZnO nanostructures are very excellent materials for potential applications such as in dye-sensitized solar cells, perovskite solar cells and biological and gas sensors.  相似文献   

16.
ZnO/TiO2 nanolaminates were grown on Si (100) and quartz substrates by atomic layer deposition at 200°C using diethylzinc, titanium isopropoxide, and deionized water as precursors. All prepared multilayers are nominally 50 nm thick with a varying number of alternating TiO2 and ZnO layers. Sample thickness and ellipsometric spectra were measured using a spectroscopic ellipsometer, and the parameters determined by computer simulation matched with the experimental results well. The effect of nanolaminate structure on the optical transmittance is investigated using an ultraviolet–visible-near-infrared spectrometer. The data from X-ray diffraction spectra suggest that layer growth appears to be substrate sensitive and film thickness also has an influence on the crystallization of films. High-resolution transmission electron microscopy images show clear lattice spacing of ZnO in nanolaminates, indicating that ZnO layers are polycrystalline with preferred (002) orientation while TiO2 layers are amorphous.  相似文献   

17.
The SrTiO3 (STO) thin films were directly grown on Si(111) substrates without buffer layer by an electron‐cyclotron‐resonance ion beam sputter deposition. The growth temperature was varied from 700°C to 850°C, while other parameters were kept unchanged. X‐ray structural analysis demonstrates that the growth temperature has a strong influence in tuning degree of (100) orientation. The STO film grown at 800°C is found to be the highest degree of (100) orientation (98%) and a strong (100) fiber texture. For the surface morphology, the development of plate‐shaped grains reveals a good correlation with the change in the degree of (100) orientation. Moreover, the leakage current–voltage characteristics of the Au/STO/Si(111) metal‐insulator‐semiconductor capacitors are investigated and discussed in considerable detail.  相似文献   

18.
GaN wires are grown on a Si (111) substrate by metal organic vapour-phase epitaxy on a thin deposited AlN blanket and through a thin SiNx layer formed spontaneously at the AlN/Si interface. N-doped wires are used as templates for the growth of core-shell InGaN/GaN multiple quantum wells coated by a p-doped shell. Standing single-wire heterostructures are connected using a metallic tip and a Si substrate backside contact, and the electroluminescence at room temperature and forward bias is demonstrated at 420 nm. This result points out the feasibility of lower cost nitride-based wires for light-emitting diode applications.  相似文献   

19.
Silicon/zinc oxide (Si/ZnO) core-shell nanowires (NWs) were prepared on a p-type Si(111) substrate using a two-step growth process. First, indium seed-coated Si NWs (In/Si NWs) were synthesized using a plasma-assisted hot-wire chemical vapor deposition technique. This was then followed by the growth of a ZnO nanostructure shell layer using a vapor transport and condensation method. By varying the ZnO growth time from 0.5 to 2 h, different morphologies of ZnO nanostructures, such as ZnO nanoparticles, ZnO shell layer, and ZnO nanorods were grown on the In/Si NWs. The In seeds were believed to act as centers to attract the ZnO molecule vapors, further inducing the lateral growth of ZnO nanorods from the Si/ZnO core-shell NWs via a vapor-liquid-solid mechanism. The ZnO nanorods had a tendency to grow in the direction of [0001] as indicated by X-ray diffraction and high resolution transmission electron microscopy analyses. We showed that the Si/ZnO core-shell NWs exhibit a broad visible emission ranging from 400 to 750 nm due to the combination of emissions from oxygen vacancies in ZnO and In2O3 structures and nanocrystallite Si on the Si NWs. The hierarchical growth of straight ZnO nanorods on the core-shell NWs eventually reduced the defect (green) emission and enhanced the near band edge (ultraviolet) emission of the ZnO.  相似文献   

20.
ABSTRACT: Gallium nitride [GaN] nanorods grown on a Si(111) substrate at 720°C via plasma-assisted molecular beam epitaxy were studied by field-emission electron microscopy and cathodoluminescence [CL]. The surface topography and optical properties of the GaN nanorod cluster and single GaN nanorod were measured and discussed. The defect-related CL spectra of GaN nanorods and their dependence on temperature were investigated. The CL spectra along the length of the individual GaN nanorod were also studied. The results reveal that the 3.2-eV peak comes from the structural defect at the interface between the GaN nanorod and Si substrate. The surface state emission of the single GaN nanorod is stronger as the diameter of the GaN nanorod becomes smaller due to an increased surface-to-volume ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号