首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
Pc-WLEDs are considered to play a spectacular role in future generation light sources in view of their outstanding energy efficiency. In this regard, Eu3+ activated BaY2ZnO5 phosphor was prepared and investigated by XRD, PL and SEM analyses. Rietveld refinement analysis was carried out to confirm the structure of the synthesized phosphor. The prepared phosphor shows an intense red emission around 627 nm under excitation by near UV light. The 5D0-7F2 transition intensity of the prepared phosphor is three times higher compared to the commercial (Y,Gd)BO3:Eu3+ red phosphor. The CIE colour coordinates of BaY2ZnO5:Eu3+ (9mol%) phosphor corresponds to be (0.6169, 0.3742) and it has a high 97.9 % colour purity. The obtained results reveal the utility of BaY2ZnO5:Eu3+ phosphor as an efficient red component in WLEDs, anti-counterfeiting and fingerprint detection applications.  相似文献   

2.
《Ceramics International》2016,42(14):15294-15300
Eu3+ ions activated NaLaMgWO6 phosphors were successfully synthesized by an improved sol-gel method using citric acid and polyethylene glycol as complexing agents. Crystal structure and doping site were investigated by XRD, Rietveld refinement and Raman spectra. The phosphors had monoclinic double perovskite structure with space group C2/m, as well as layered ordering of A-site and rock-salt ordering of B-site. The blueshift of Raman T2g(1) mode manifested Eu3+ ions had entered into A-site. Thereafter, luminescence properties, such as excitation and emission spectra, CIE coordinates, concentration quenching and thermal quenching were discussed. The quenching concentration for hypersensitive electric dipole transition of Eu3+ reached up to 50.0 mol%. The delayed concentration quenching was observed in NaLaMgWO6: Eu3+ phosphor. The theoretical quenching concentration was obtained based on L. Ozawa's theory, and the quenching mechanism on Dexter's theory. Excellent thermal stability of this phosphor shows that it is a potential red phosphor for solid state lighting.  相似文献   

3.
Eu3+-activated BaLaMgNbO6 red-emitting phosphors were synthesized by a high-temperature solid-state reaction method. Phase analysis and luminescence were characterized by X-ray diffraction (XRD) and photoluminescence excitation and emission spectra. The XRD patterns showed that BaLaMgNbO6 had a monoclinic structure with space group P21/n. The excitation spectra consisted of a broad charge-transfer band and some sharp f-f absorption peaks characteristic of Eu3+. The intensity ratio of I615/I590 was used to detect the chemical environment of Eu3+. The chromaticity coordinates of BaLa0.7Eu0.3MgNbO6 were (0.67, 0.33), indicating that the BaLaMgNbO6:Eu3+ phosphors were excellent red-emitting phosphors. Under excitation by near-ultraviolet (UV) and blue light, the phosphor not only exhibited intense red emission but also showed high color quality. The Ozawa and Dexter energy-transfer theories were employed to calculate the theoretical quenching concentration and determine the concentration quenching mechanism. In addition, the activation energy of BaLa0.7Eu0.3MgNbO6 was calculated through the Arrhenius equation. A configurational coordinate diagram was used to explain the thermal quenching mechanism.  相似文献   

4.
In this work, the conventional solid-state method was applied to synthesize a series of red-emitting NaLaMgWO6:Sm3+ phosphors. The crystal structure, phase purity, morphology, particle size distribution as well as elemental composition of the as-prepared phosphors were investigated carefully with the aid of XRD, SEM, EDS, FT-IR analyses, indicating the high-purity and micron-sized NaLaMgWO6:Sm3+ phosphors with monoclinic structure were prepared successfully. The spectroscopic properties of Sm3+ in NaLaMgWO6 host including UV–vis diffuse reflection spectrum, photoluminescence excitation and emission spectra, decay curves, chromaticity coordinates and internal quantum efficiency were investigated in detail. Upon excitation with UV (290 nm) and n-UV (406 nm), NaLaMgWO6:Sm3+ phosphor presented red emission corresponding to the 4G5/26HJ (J = 5/2, 7/2, 9/2, and 11/2) transitions of Sm3+, in which the hypersensitive electronic dipole transition 4G5/26H9/2 (645 nm) was with the strongest emission intensity because Sm3+ ions were located at a lattice site with anti-inversion symmetry. The optimal concentration of Sm3+ was different for the given excitation wavelength such as 290 nm and 406 nm, which was interpreted by the extra effect of the energy transfer from W6+-O2- group to Sm3+. The decay lifetime for 4G5/26H9/2 transition of Sm3+ was very short (< 1 ms) and decreased with the increasing Sm3+ concentration. The present investigation indicates that NaLaMgWO6:Sm3+ phosphor could be a potential red component for application in w-LEDs.  相似文献   

5.
《Ceramics International》2016,42(12):13855-13862
Li+ ion substituted Na1−xLixLa0.95Eu0.05MgWO6 phosphors were successfully synthesized by an improved sol-gel method using citric acid and polyethylene glycol as complexing agents. The structural evolution was systematically investigated by X-ray diffraction with Rietveld structure refinement and Raman spectra. The layered ordering of A-site cations and a second-order Jahn-Teller distortion of B’ cations simultaneously existed in this double perovskite. The decreased symmetry and lattice parameters within the same space group C2/m were observed from the Li+ substituted powders. Upon increasing the Li+ concentration, the absorption intensities of the 4f−4f transitions of Eu3+ monotonically increased. Likewise, the intensity of 5D0-7F2 monotonically increased under the excitations of both near-ultraviolet and blue light, with an enhancement of ten- and six-fold, respectively. The relative intensity ratio of red/orange emissions gradually increased, and the CIE chromaticity coordinates gradually approached those of standard red light. “A site inducing energy transfer” in double perovskite was achieved by selecting a substitution element with a small radius.  相似文献   

6.
《Ceramics International》2023,49(5):8005-8014
Multifunctional green emitting (Potassium Calcium Fluoride: x Trivalent Terbium) KCaF3: xTb3+ (x = 0.01, 0.03, 0.05, 0.07, 0.09, and 0.11 mol%) phosphor was synthesized by solid state reaction method. Crystal structure, morphology, photoluminescence and thermoluminescence properties were investigated in detail. Photoluminescence emission spectrum showed the characteristic maximum intensity peak at 543 nm corresponding to Tb3+ emission band when excited using an UV light of wavelength 374 nm. The concentration quenching effect of Tb3+ in KCaF3 phosphor was caused by dipole – quadrupole interaction between Tb3+ ions. CIE coordinates of KCaF3: xTb3+ (x = 0.05 mol%) was found to be x = 0.2959 and y = 0.6592 positioning at green region. Beta irradiated thermoluminescence glow curve was recorded on KCaF3: xTb3+ (x = 0.05 mol%) phosphor. Low temperature signals in TL glow curve were removed using bleaching or preheating technique. The optimization of preheat temperature was performed using different temperature and found 125 °C (peak 1) and 210 °C (peak 2) as an optimized temperature. Temperature of maximum TL intensity (Tm) of peak 1 and peak 2 was found to be 181 °C and 292 °C, respectively. The activation energy (Ea) and frequency factor (s) of peak 1 and peak 2 were calculated using peak shape method and variable heating rate method (VHR). Characteristic studies for dosimetry application such as dose response and reusability of KCaF3: xTb3+ (x = 0.05 mol%) were investigated in detail.  相似文献   

7.
A series of Eu3+ ions activated double perovskite CaLaMgSbO6 phosphors were successfully synthesized. Crystal structure was investigated by XRD and the results showed that this double perovskite exhibited rock-salt ordering of B-site ions. High-resolution transmission electron microscopy was used to prove the existence of B-site ordering. Thereafter, luminescence properties of the as-prepared powders were discussed in detail. The phosphors could be well excited by ultraviolet, near ultraviolet, and blue light. The quenching concentration for the transition of 5D0-7F2 reached up to 50.0 mol%. The theoretical quenching concentration and quenching mechanism were discussed in detail. Excellent thermal stability of this double perovskite phosphor was obtained and the quenching mechanism was investigated based on the configurational coordinate diagram. The CIE coordinates showed that this double perovskite phosphor had great potential in solid state lighting.  相似文献   

8.
《Ceramics International》2016,42(12):13648-13653
A series of Li3Ba2Y3−x(WO4)8:xEu3+ (x=0.1, 1, 1.5, 2 and 2.8) phosphors were synthesized by a high temperature solid-state reaction method. Under the excitation of near ultraviolet (NUV) light, the as-prepared phosphor exhibits intense red luminescence originating from the characteristic transitions of Eu3+ ions, which is 1.8 times as strong as the commercial Y2O2S:Eu3+ phosphor. The optimal doping concentration of Eu3+ ions here is confirmed as x=1.5. The electric dipole-quadrupole (D-Q) interaction is deduced to be responsible for concentration quenching of Eu3+ ions in the Li3Ba2Y3(WO4)8 phosphor. The analysis of optical transition and Huang-Rhys factor reveals a weak electron-phonon coupling interaction. The temperature-dependent emission spectra also indicate that the as-prepared Li3Ba2Y3(WO4)8:Eu3+ phosphor has better thermal stability than that of the commercial Y2O2S:Eu3+ phosphor. Therefore, our results show that the as-prepared Li3Ba2Y3(WO4)8:Eu3+ phosphor is a promising candidate as red emitting component for white light emitting diodes (LEDs).  相似文献   

9.
The SrSi2O2N2:Eu2+ green-emitting phosphor, as a member of oxynitride phosphors, could greatly enhance the color quality of the white-light conversed by single yellow-emitting phosphor. However, SrSi2O2N2:Eu2+ phosphors prepared by traditional solid-state ways normally consist hard agglomerates with unevenly dispersed particles and therefore suppress the luminescence properties. This research proposes a heterogeneous precipitation protocol where precipitation process is introduced, in order to produce a precursor in the first phase. And in the second phase, a high-temperature solid-state process is adopted for obtaining the final product. The main results show that, for an optimized SrSi2O2N2:Eu2+ phosphor prepared using our protocol, (1) the SrSi2O2N2:Eu2+ particles are faceted and with smooth faces and (2) the phosphor photoluminescence, external quantum efficiency, stability against thermal exposure, and physical stability consistently outperform the current commercially used product. This research essentially provides an economic way for production of solid-state lighting with enhanced color quality.  相似文献   

10.
In recent years, key study was designing nanomaterials (NMs) with tunable properties in order to obtain high functional materials. For this purpose, an attempt with great effort has been put forward to synthesize ZrO2:Eu:Li (1–11 mol%) NM with varying concentration of Li+ ion that can have a control over phase, size, morphology, crystallinity, band gap and surface chemistry. More importantly, addition of Li as codopant influences the phase and crystallinity change with the change in concentration. However important challenges faced by this work was to understand the phase change, crystallinity, structural change and photocatalytic activity which has to be still explored. The synthesized NMs possess mixed phase and cubic phase with change in concentration of codopant which may be attributed to presence of defect states, micro strain, distortion of lattice. The energy band gap was found to decrease for 7 mol% NM attributed to the change in the phase. Porous morphology with variation in pore length was observed. Enhanced luminescence intensity with intense orange red emissions consistent to 5D07Fj (j = 0 to 4) intra configurational f-f transitions was observed for ZrO2:Eu:Li+(1–11 mol%) nanophosphor excited at 394 nm. The visualization of latent fingerprints using ZrO2: Eu: Li+7mol% nanophosphor on several surfaces, the powder dusting technique was adopted. The enhanced fingerprint under UV light provides well resolved ridge patterns for the identification of individual latent finger prints using ZrO2:Eu:Li (7 mol%) with clear resolution. Lower charge transfer resistance with enhanced photocatalytic activity for decolourization of Rhodamine B with high pore length to allow multiple reflections under UV light irradiation for 7 mol% NM with reduced band gap and optimum luminescence intensity was observed. Hence, the synthesized ZrO2:Eu:Li (7 mol%) can be employed in forensic science towards latent fingerprint development, as a photocatalyst for environmental remediation and as luminescent material in display applications.  相似文献   

11.
A new type of Bi3+,Eu3+ single- and co-doped Na3.6Y1.8(PO4)3 phosphate phosphors were manufactured using conventional high-temperature solid-state reaction technique to explore their application for solid-state lighting. The crystal structure, luminescent properties, luminescent mechanism and quantum efficiency were thoroughly explored. Results show that there are two crystallization sites for Bi3+ and Eu3+ ions. Upon the excitation of 342 and 373 nm, Bi3+ single-doped phosphors exhibit green and blue emission, derived from the 3P1 to 1S0 transition of Bi3+ located in different occupancy sites. Thanks to radiative energy transfer process from Bi3+ to Eu3+, adjustable emission could be acquired by altering Eu3+ content in co-doped phosphors. Pure white-light emission with quantum efficiency value of 22.9% can be realized in Na3.6Y1.8(PO4)3:0.01Bi3+,0.1Eu3+ sample and the integrated intensity of white light emission at 417 K remains 85% of that at room temperature. Our results indicate that Na3.6Y1.8(PO4)3:Bi3+,Eu3+ phosphors have feasible application in high-power ultraviolet driven solid-state lighting.  相似文献   

12.
At present, latent fingerprint and anti-counterfeit detection technologies have become key factors in forensic science. Here, we report on the synthesis and characterizations of Eu3+ ions doped monoclinic Gd2MoO6 nanophosphors for latent fingerprints and anti-counterfeiting applications. The crystalline structure, phase purity and lattice parameters of Gd2MoO6:Eu3+ nanophosphors were investigated in detail using the X-ray diffraction and Rietveld refinement analyses. The photoluminescence excitation spectra of Gd2MoO6:Eu3+ nanophosphor unveiled their strong charge transfer band and characteristic f-f transitions of Eu3+ ions in the UV and near-UV regions. Whereas, the corresponding emission spectra showed an intense red emitting hypersensitive transition (5D07F2) with excellent CIE coordinates (0.6503, 0.3490). The concentration quenching of Eu3+ ions in Gd2MoO6 host lattice was observed at 5?mol%. The optimized Gd2MoO6:Eu3+ nanophosphor was used to detect the latent fingerprints and anti-counterfeits. The developed latent fingerprints fluorescent images enabled three levels of identifications with high contrast, selectivity and sensitivity. Also anti-counterfeit marker was successfully developed through handwriting and spray method. The obtained results of the synthesized Gd2MoO6:Eu3+ nanophosphors signifying their potential use in latent fingerprint and anti-counterfeit applications.  相似文献   

13.
Novel reddish-orange-emitting Ca2GdNbO6:Sm3+ phosphors based on the emission of 4G5/2 → 6H9/2 transition at 651 nm with the chromatic coordinate of (0.633, 0.366) were synthesized. The crystal structure and chemical purity were identified in detail. Under the 407 nm excitation, the optimum concentration of Sm3+ ion was found to be 5 mol% dominated by the dipole-dipole interaction in the Ca2GdNbO6 host material. The color purity of the sample with optimum doping was estimated to be about 78.38%. Besides, the thermal stability was also studied, and it was further found that the emission intensity remained 65.32% at 423 K. The packaged white LED device exhibited excellent CRI and CCT values of 92.43 and 4896 K. Finally, the polydimethylsiloxane film with a stable structure and flexible property was prepared. These above results reveal that novel reddish-orange-emitting Ca2GdNbO6:Sm3+ phosphors can be applied in high CRI white communication and flexible display applications.  相似文献   

14.
Deep-red light emitting phosphors are widely used in LEDs for indoor plant growth because of the critical role played by red light in plant growth. The luminescence properties of deep-red phosphors are still not well understood at present. An energy transfer strategy is a common and effective method to improve luminescence properties. In principle, the energy transfer process may occur when the sensitizer's emission spectra overlap with the activator's excitation spectra. In this work, Bi3+ and Mn4+ were incorporated into the matrix of Gd2MgTiO6 as sensitisers and activators, respectively. Mn4+ ions tend to occupy the [TiO6] octahedral site and the Bi3+ ions are expected to substituted in the site of Gd3+. The energy transfer process from Bi3+ to Mn4+ was realised and the photoluminescence (PL) intensity of Mn4+ increased with the doping content of Bi3+. Upon excitation at 375 nm, the PL intensity of Mn4+ increased to 116.4% when the doping concentration of Bi3+ reached 0.3%. Finally, the pc-LED devices were prepared by a Gd2MgTiO6:Bi3+, Mn4+ phosphor. The high red luminescence indicated that this phosphor has potential applications in indoor LED lighting.  相似文献   

15.
A novel Mn4+ activated Ca2LaSbO6 (CLS) far-red phosphor was synthesized by high temperature solid state reaction. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence spectra, ultraviolet-visible spectra, luminescence decay times, emission-temperature relationship and internal quantum efficiency (IQE). It is found that CLS:Mn4+ phosphor has a strong broad excitation band in the range of 200–550?nm. The samples can be excited by ultraviolet and blue light. There is a wide emission band centered at 685?nm between 600?nm and 760?nm. The optimum doping concentration of Mn4+ is approximately 0.5?mol%. In addition, all the CIE chromaticity coordinates of CLS:0.005Mn4+ located at far-red region. The concentration quenching mechanism is the dipole-dipole interaction of Mn4+ activator. Importantly, the CLS:0.005 Mn4+ sample has an IQE of up to 52.2%. Finally, a 365?nm ultraviolet light emitting diode (LED) chip combined with 0.5?mol% Mn4+ far-red phosphor was used to fabricate the LED device. All the results indicated that CLS:Mn4+ phosphors have potential applications in indoor plant cultivation.  相似文献   

16.
《Ceramics International》2021,47(20):28167-28177
Novel apatite-type NaCa3Bi(PO4)3F:xSm3+ (0.01 ≤ x ≤ 0.30) orange-red-light phosphors were synthesized through the solid-state method at high temperature. The crystal structure, energy band structure, density of state, phase purity, particle morphology, photoluminescence properties, thermostability, and luminescence decay of the phosphors were comprehensively characterized. When λex = 404 nm, the optimal NaCa3Bi(PO4)3F:0.05 S m3+ phosphor showed the orange-red emission (597 nm). The NaCa3Bi(PO4)3F:Sm3+ phosphors exhibited abnormal thermal quenching properties as their emission intensity increased by about 2.57% from 300 to 380 K. Their intensity at 440 K was still 1.01-fold stronger than that at room temperature. The abnormal thermal quenching mechanisms were well explained via the coordinate configuration scheme. The thermal activation energy (Ea) was calculated to be 0.79 eV. The color purity of all the phosphors reached 99.9%. Ultimately, a white light-emitting diode (w-LED) was fabricated based on the tri-color RGB method. The color rendering index and the chromaticity coordinates of the fabricated w-LED were 89 and (0.310, 0.319), respectively. Thus, these high thermostability NaCa3Bi(PO4)3F:Sm3+ orange-red phosphors can be potentially used in w-LED applications.  相似文献   

17.
《Ceramics International》2023,49(1):309-322
Efficient ultra-broadband near-infrared (NIR) phosphors with long-wavelength (λmax > 850 nm) and wide full width at half-maximum (FWHM, >200 nm) have sparked tremendous interest, demonstrating their immense potential in NIR spectroscopy technology. Nevertheless, the development of NIR spectroscopy technology suffers from the restricted capability to efficiently emit the ultra-broadband NIR light. Herein, the synergetic enhancement strategy of heterogeneous substitution and compositional modulation was applied to create a novel Cr3+ doped long-wavelength ultra-broadband MgO: Cr3+, Ga3+ phosphor, which exhibited a long-wavelength ultra-broadband NIR emission (λmax = 850 nm) covering the range of 650–1300 nm on the electromagnetic spectrum with the FWHM of more than 200 nm under the excitation of 468 nm light. Furthermore, the tunable NIR emission from 818 nm to 862 nm with an optimized quantum efficiency of 30% was accomplished by the Ga3+ ions substitution and Cr3+ ions modulation. The phosphor exhibited remarkable thermal stability up to 100 °C, remaining 83% of the integrated emission intensity at room temperature. A prototype of the NIR phosphor-converted LED (pc-LED) demonstrated that the novel MgO: Cr3+, Ga3+ phosphor possessed a relatively strong NIR output power (15.05 mW at 100 mA driven current) with a photoelectric conversion efficiency of 5.53%, which is impressive compared with other Cr3+-doped long-wavelength ultra-broadband phosphors. This work not only proposes a novel long-wavelength ultra-broadband NIR phosphors with industrialization and great application prospect in night vision but highlights a synergetic enhancement strategy to effectively boost the performance of long-wavelength ultra-broadband NIR pc-LED light sources.  相似文献   

18.
Cyan-emitting phosphors have attracted widespread attention as an integral part to realize full-spectrum lighting. Understanding the site occupation of luminescence centers is of great importance to design and clarify the luminescent mechanism for new cyan-emitting phosphors. Here, we report a cyan-emitting phosphor Ca18Na3Y(PO4)14:Eu2+ synthesized by the high-temperature solid-state method. The crystal structure is characterized by X-ray diffraction and refined by the Rietveld method. The diffuse reflectance spectra, excitation/emission spectra, fluorescence decay curves, thermal stability, and related mechanism are systematically studied. The results show that Ca18Na3Y(PO4)14:Eu2+ crystallizes in a trigonal crystal system with space group R3c. Under excitation at 350 nm, a broadband cyan emission can be obtained at 500 nm with a half-width of about 120 nm, which is caused by Eu2+ occupying five different sites in host, namely, Na2O12 (450 nm), (Ca3/Na1)O8 (485 nm), Ca2O8 (515 nm), Ca1O7 (565 nm), and (Ca4/Y)O6 (640 nm), respectively. Moreover, crystal structure, room and low temperature spectroscopy, and luminescence decay time are used to skillfully verify the site-selective occupation of Eu2+. Finally, a full-spectrum light-emitting diode (LED) lamp is fabricated with an improved color rendering index (∼90.3), CCT (∼5492 K), and CIE coordinates (0.332, 0.318). The results show that Ca18Na3Y(PO4)14:Eu2+ has the potential to act as a cyan emission phosphor for full-spectrum white LEDs.  相似文献   

19.
A single‐phase full‐color emitting phosphor Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ has been synthesized by high‐temperature solid‐state method. The crystal structure is measured by X‐ray diffraction. The emission can be tuned from blue to green/red/white through reasonable adjustment of doping ratio among Eu2+/Tb3+/Mn2+ ions. The photoluminescence, energy‐transfer efficiency and concentration quenching mechanisms in Eu2+‐Tb3+/Eu2+‐Mn2+ co‐doped samples were studied in detail. All as‐obtained samples show high quantum yield and robust resistance to thermal quenching at evaluated temperature from 30 to 200°C. Notably, the wide‐gamut emission covering the full visible range of Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ gives an outstanding thermal quenching behavior near‐zero thermal quenching at 150°C/less than 20% emission intensity loss at 200°C, and high quantum yield‐66.0% at 150°C/56.9% at 200°C. Moreover, the chromaticity coordinates of Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ keep stable through the whole evaluated temperature range. Finally, near‐UV w‐LED devices were fabricated, the white LED device (CCT = 4740.4 K, Ra = 80.9) indicates that Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ may be a promising candidate for phosphor‐converted near‐UV w‐LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号