首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
堰塞坝漫顶溃决计算方法研究   总被引:2,自引:1,他引:2  
准确快速进行溃坝洪水预报能够为防灾减灾提供重要的技术支撑。堰塞坝漫顶溃坝模型试验显示,在强烈的非恒定流作用下,坝体材料以高强度推移质输沙同时伴有悬移质挟沙的运动形式向下游输移,水流对坝体的冲刷输移量不断增大并逐渐趋于平衡。溃口因受侧向侵蚀而逐渐拓宽,边岸随着侵蚀后退而逐渐变陡并发生坍塌,直接影响洪水的下泄过程。在上述试验基础上,采用非平衡输沙变化方程及河流动力学输沙公式计算溃口通道的冲淤变形,引入边岸侵蚀和崩塌模式模拟溃口展宽过程,并依据横向变形方程计算侧向侵蚀的宽度,建立了堰塞坝漫顶溃决洪水预测计算方法。利用唐家山堰塞坝溃坝实测资料检验的结果表明,本文建立的预测计算方法同实际测量资料较为符合。  相似文献   

2.
堰塞坝发生溃决破坏会严重威胁下游人民的安全。为降低其对下游的威胁,文章以黑西洛沟滑坡-泥石流-堰塞湖灾害为例,通过Flow-3D软件对坝体溃决过程进行模拟,得到流速特征及溃口冲淤情况。结果表明:泄流过程中,溃口逐步扩展,坝体下游出现侵蚀破坏,随后溃口向上游发展;泄流槽末端最大流速达到17.5m/s,溃口迅速下切,冲刷深度达25.7m。坝体下游出现淤积,淤积高度达8.4m。溃决过程中,跌坎不断向上移动,发生溯源侵蚀。研究成果有助于深入分析黑西洛堰塞坝溃决过程及机理,为今后处置堰塞体提供支持。  相似文献   

3.
《人民黄河》2015,(5):38-41
考虑堰塞湖上游洪峰流量对堰塞坝溃决过程的影响,以4种不同上游洪峰流量为变量进行8组水槽试验,观测溃坝过程和溃口的变化,总结堰塞坝漫顶溃决的4个阶段,即漫顶下渗阶段、大通道形成阶段、大通道快速冲刷阶段和稳定阶段。结果表明:最大溃口流量随上游洪峰流量的增大呈对数型增长趋势,上游洪峰流量的增大对溃坝过程影响明显,具体表现为上游洪峰流量越大,快速冲刷时间越短,溃口发展和二次垮塌的平均速率和规模越大,且溃口洪水过程由单一的水位涨落变为持续性高水位过程。  相似文献   

4.
堰塞坝几何形态、粒径级配和库容决定了其溃决机理的复杂性,而溃决过程的精细模拟和峰值流量的准确预测是应急处置的基础和关键.堰塞坝溃决过程与模拟技术是面向国家防灾减灾重大需求的前沿热点问题.在系统梳理国内外试验和数值模拟研究进展的基础上,指出以往试验研究坝体尺度小,足够大的库容基本未模拟,难以显示最终溃口形态;数学模型假设...  相似文献   

5.
堰塞坝溃决机理试验研究   总被引:11,自引:1,他引:11  
通过水槽模型试验研究了考虑渗流情况下非黏性堰塞坝体的漫顶溃决侵蚀机理.结合试验数据,分析了溃坝过程的同阶段水流条件及坝体侵蚀的相互关系.结果表明:堰塞坝溃决过程分为:Ⅰ渗流侵蚀、Ⅱ初始溃决点形成、Ⅲ溯源蚀退、Ⅳ溃口展宽下切(洪峰过程)以及Ⅴ粗化再平衡5个阶段,溃决发展主要集中于阶段Ⅲ—Ⅳ;溃决洪峰过程与坝顶长度和入库流量相关,坝体长度越短,入库流量越大,洪峰越早越“尖瘦”;溃决流量变化与溃口展宽、下切速率相关,溃口展宽与下切同时存在阶段,展宽速率对流量变化的影响更大.另外,对溃决发展过程中展宽和下切的机理的初步探讨表明,斜坡泥沙起动这一机理能够很好地解释观察到的试验现象.  相似文献   

6.
堰塞坝漫顶溃决过程及其受组成结构的影响   总被引:1,自引:0,他引:1  
以四川茂县宗渠堰塞坝为原型,以几何相似比1〖DK(〗∶〖DK)〗100进行堰塞坝漫顶溃决模型试验。通过模型试验揭示了堰塞坝漫顶溃决的动力学过程,即下游坡面侵蚀、冲沟侵蚀、陡坎稳定侵蚀、陡坎加速侵蚀、陡坎减速侵蚀和常态化过程6个阶段。通过对比试验,揭示了坝体密度和级配特征对溃决速率以及溃口形式的影响机制,即坝体密度通过颗粒间剪切作用于溃决过程,密度更大的坝体溃决更慢,形成中轴线处窄浅的“矩形”溃口;坝体级配通过孤粒起动作用于溃决过程,级配更粗的坝体溃决更慢,形成中轴线处宽浅的“倒梯形”溃口。  相似文献   

7.
汶川震区泥石流沟道内存在大量地震诱发堰塞坝,溃决后极易形成泥石流,为研究其溃决特征和机理,通过松散堆积堰塞体的临界溃决试验,研究了在不同颗粒级配条件下,堰塞体溃决的临界溃决流量以及堰塞体溃决后的流量,得出:1堰塞体的临界溃决流量随颗粒中值粒径的增大而增大,在相同颗粒中值粒径条件下,临界溃决流量随颗粒的不均匀系数Cu的增大而减小,Cu50则临界溃决流量趋于固定值;2在上游来水流量较小时,增大来水流量后,下泄洪峰流量略有增加,堰塞体溃决产生的流量占洪峰流量比重较大,而来水流量较小,对溃决后洪峰流量的贡献也较小。  相似文献   

8.
土石坝溃坝机理与溃坝数学模型研究对于预测溃坝洪水致灾过程和致灾后果具有重要的意义。为此,概要介绍了国内外在土石坝溃决机理与溃坝过程数学模型方面的研究进展,特别是笔者研究团队近年来在该领域的最新研究成果,表明以笔者研究团队为代表的国内专家学者,在高土石坝溃坝离心模型试验技术,高心墙坝、面板坝及堰塞坝溃决机理和溃坝过程模拟理论研究方面走在了世界前列。但在土石坝溃坝过程模拟计算机软件的通用性以及溃坝致灾过程的可视化技术方面与欧美国家相比,仍有相当大的差距。建议今后应加大精细模拟高心墙坝、高面板坝溃坝过程数学模型的研究力度,注重可视化技术在溃坝过程模拟中的应用,加快研制通用性友好,能精细模拟土石坝溃坝及其致灾过程的可视化计算机软件。  相似文献   

9.
堰塞坝溃决洪水对下游影响区域的人民生命财产、基础设施以及生态环境构成严重威胁,提高堰塞坝溃决参数及其寿命预测的准确度是应急处置的迫切需求。本文对全球1957组堰塞坝案例分别进行地理、统计学分析,在得到溃决参数主要影响因素的基础上,选取数据库中拥有完整信息的48组案例,利用非线性回归方法分别建立了洪峰流量、破坏深度、溃口顶宽、溃口底宽和溃决时长的预测模型,其均具有较高的拟合程度。之后分析了堰塞坝溃决参数的敏感性,结果显示坝高对溃决过程有显著影响。此外,基于19组寿命信息充分的案例,使用不同自变量和算法分别建立了蓄水阶段持续时间、溢流阶段持续时间的预测模型,并采用加权融合法提出了相应的融合模型。该成果可为量化评估堰塞坝溃决过程参数和寿命预测提供参考。  相似文献   

10.
合理预测堰塞体的溃决过程对于致灾后果评价和防灾减灾工作的开展具有至关重要的意义,但由于堰塞体结构和材料的复杂性,给预测工作带来了挑战。基于堰塞体的地质勘察资料和溃决机理,建立了一个可考虑材料冲蚀特性随深度变化的堰塞体漫顶溃决过程数学模型。模型主要包括水动力模块、材料冲蚀模块和溃口发展模块,并采用按时间步长迭代的数值计算方法模拟堰塞体溃决时的水土耦合过程。选择拥有实测资料的白格“11·03”堰塞体溃决案例对模型进行验证,模拟结果验证了模型的合理性。参数敏感性分析结果表明,堰塞体材料冲蚀系数对溃口流量过程具有重要影响,堰塞体材料临界剪应力对溃决过程影响较小;另外,开挖泄流槽可大幅降低库容较大堰塞湖溃决时的溃口峰值流量,是一种行之有效的减灾手段。  相似文献   

11.
为避免土石坝漫顶后迅速溃决,采用水槽试验的手段对临时加高坝顶和在坝体下游面铺设防 水布两种工程除险措施进行了研究。试验发现,临时加高坝顶后,可以有效地减缓漫顶时间,推迟洪 峰的到来,但是临时加高坝顶会使坝前水位升高,使得溃坝形成的洪峰流量值增大,因此在实践中采 用该工程措施时要慎重。而在下游坡面铺设防水布后,可以有效地减缓下游面的冲刷速度,不仅可以 将整个溃坝历时延长,推迟洪峰的出现,同时形成的溃坝洪峰值也会有所降低,相比较而言,该措施 是一种比较适宜的工程应急除险措施。  相似文献   

12.
随着全球气候形势异常,局地极端强降雨频发,我国小型水库的安全度汛工作面临严峻形势,对小型水库开展必要的溃坝风险分析工作是非常必要的.以山东某小型水库为研究对象,分析计算了该水库在遭遇校核洪水和溃坝洪水两种情景下对下游高速铁路的影响,所得结果可以为相关管理单位应对溃坝风险提供决策支持.  相似文献   

13.
土石坝漫顶溃决过程数值模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对水动力条件变化复杂、水土耦合作用强烈的土石坝溃决过程,结合水库调洪演算、清水冲刷以及溃口冲刷侵蚀机理,在Breach模型基础上建立了土石坝漫顶溃口流量过程计算物理模型。结果表明:模型对JP水库大坝溃决过程的模拟,很好地再现了溃决洪水流量过程线、溃口展宽和下切过程,验证了模型的合理性和应用潜力。  相似文献   

14.
为了研究冻土条件下的溃堤机理,开展了弯道水槽概化模型试验。基于结构光的三维成像原理,提出了一种无干扰全方位的实时溃口三维参数测量方法,并结合温度传感器监测堤内温度变化,研究了冻土条件下均质土堤漫顶溃决过程中溃口形态的演变规律和溃决区域的水位、流速、流量变化特性。依据试验中溃口冲蚀特点,将溃堤过程划分为渗透过流、堤后冲蚀、横向展宽、冲淤平衡4个阶段,黏性土堤和非黏性土堤第2阶段、第3阶段分别以陡坎冲蚀和失稳坍塌为主要特征,且黏性土堤会出现明显的陡坎合并现象。试验结果还表明:冻结后土体间隙的冰晶体与土颗粒相互胶结,土体的黏聚力增大,溃口扩展速率及溃决区域的水位、流速变化率均减小,且黏性土堤受冻土深度的影响更加明显;冻土条件下堤防背水侧与堤顶的连接处薄弱易溃,应加强维护,且一旦溃堤应优先对临水侧进行封堵。  相似文献   

15.
土石坝漫顶破坏溃口发展数值模型研究   总被引:7,自引:0,他引:7       下载免费PDF全文
我国已溃决土石坝中由于漫顶破坏而造成的比例高达50%以上,因此,开展土石坝漫顶溃决机理和溃口发展过程研究,正确预测溃口流量过程线及溃坝致灾后果很有必要.本文首先根据现场溃坝调查资料和大型溃坝试验结果,研究分析了土石坝的溃决机理和溃决过程,在此基础上提出了一个描述土石坝漫顶破坏溃口发展过程的数值模型.该模型采用高速水流泥沙输移公式来计算溃坝水流对溃口纵横向的连续冲蚀;采用溃口边坡稳定性分析来模拟边坡失稳坍塌所引起的间歇性横向扩展;通过楔块体力的平衡计算来模拟坝体突发性崩塌所引起的溃口增大现象;通过下游坝体冲槽和坝顶溃口流量平衡来建立两者发展过程的相互影响.最后利用该模型计算分析了板桥水库土石坝发生漫顶溃决的溃口发展过程及溃口流量过程线,模拟结果与实测资料基本一致,从而证实了该模型的合理性.  相似文献   

16.
针对堰塞坝坝体土石料的宽级配特性,引入与水流方向垂直的附加作用力来考虑粗颗粒对细颗粒的阻拦、遮蔽作用以及细颗粒对粗颗粒的包围、填实作用,提出了一个可模拟堰塞坝漫顶溃决过程溃口发展规律与流量过程的数值模型和相应的计算方法,利用该模型对唐家山堰塞坝泄流过程进行了模拟,得出的泄流槽发展规律与洪水流量过程与实测资料接近,验证了该模型和计算方法的合理性。进一步,利用笔者建议的数学模型及数值计算方法,比较分析了唐家山堰塞坝除险过程中泄流槽断面型式对堰塞坝泄流过程的影响,发现堰塞湖在采用泄流槽引流除险时,泄流槽深度与断面型式对其泄流过程具有重要影响,增加泄流槽深度,可明显提高泄流效率,但堰塞湖下游将承受更大的风险。对于同样深度的梯形泄流槽,如果将槽底部断面减小,形成复合梯形泄流槽,不仅可减少开挖工作量,而且没有明显降低泄流效率,同时后者的泄流过程更为平缓,最大洪峰流量减小,出现的时间滞后,堰塞湖下游承受的风险也将降低。  相似文献   

17.
为分析淤地坝淤积高度对漫顶溃坝洪水的影响,选择理想沟道和某小流域内的淤地坝为研究对象,采用耦合溃口演变过程的水动力数值模型,模拟分析了不同淤积程度下淤地坝溃坝洪水过程。研究表明:溃坝洪水流量随淤积高度的增加而减小,且洪峰流量与淤积高度的关系可用二次多项式拟合,相关系数均在0. 99左右,拟合精度较高;淤积高度至坝高20%和40%时,洪峰流量削减率分别达40. 50%和68. 71%,可见在淤地坝运行初期和中期,淤积对洪峰流量的削减效果显著。研究成果对淤地坝系规划及安全度汛有指导意义。  相似文献   

18.
土石坝的溃决将对淹没区的人民生命财产带来巨大灾难,因此土石坝溃决过程的研究对溃坝致灾后果的评价具有重要意义。首先对大坝的溃决原因进行了分析,并依据常用的土石坝溃决数学模型的分类标准,着重介绍了土石坝溃决参数模型、土石坝溃决过程简化模型和土石坝溃决过程精细化模型的研究进展,对现有成果的优缺点进行了分析总结,并对今后研究的重点提出了相关建议。  相似文献   

19.
为了研究坝体土料黏粒质量分数对均质土坝漫顶溃决过程的影响,建立了描述均质土坝溃坝溃口发展规律的溃坝数值模型,对实体溃坝案例进行了反馈分析,验证了模型的合理性,并利用该模型重点研究了坝体土料黏粒质量分数对均质土坝溃口发展规律和洪水流量过程的影响。结果表明:坝体土料的黏粒质量分数对均质土坝的溃口发展规律、最终溃口形状以及溃口洪水流量过程具有明显影响,土体黏粒质量分数越高,其临界起动流速越大,冲蚀率越小,均质土坝溃口的发展速率越慢,溃口边坡的失稳坍塌临界深度越大,从而导致最终溃口形状也越小,相应地溃口洪峰流量及最大下泄水量也越小,溃口洪峰流量出现的时间越迟。  相似文献   

20.
The present study investigated the effects of clay content and levee's slopes on the breach formation process for levees constructed by both cohesive and non‐cohesive soils. Twelve experiments were carried out and the breach formation of levees was observed by measuring the breach discharge variations and scour topography with time. The initiation of surface erosion was analysed by comparing the estimated bed shear stress and the critical soil shear stress, and the rate of erosion during breaching was estimated by employing the erosion index. The erosion of levees due to overtopping was classified into three regimes of uniform surface erosion, erosion from the toe, and single scour formation. It was found that the upstream levee's slope had negligible effects on the breach process, whereas the downstream slope significantly increased the erosion index. The peak breach discharge increased with increasing downstream slope and it occurred earlier. Experimental results also showed that the peak breach discharge was higher in non‐cohesive levees than the cohesive embankments and it occurred much earlier. Based on dimensional analysis, empirical equations were proposed to predict the breach discharge and the topography of erosion during the breach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号