首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I DDQ testing uses an important property of CMOS ICs that in the steady state, the current consumption is very small. Therefore, a higher steady state current is an indicator of a probable process defect. Published literature gives ample evidence that elevation in the steady state current could be caused due to a variety of reasons besides process defects. As technology moves into deep sub-micron region, the increase in various transistor leakage currents have the potential of reducing theI DDQ effectiveness. In this article, we propose the separation of VDD and VSS supplies for signal and bias paths so that various leakage current components are measured or computed. The methodology provides means for unambiguousI DDQ testing, better defect diagnosis, and can be used for deep sub-micronI DDQ testing.  相似文献   

2.
Although IDDQ testing has become a widely accepted defect detection technique in CMOS ICs, its effectiveness in nanometer technologies is threatened by the increased leakage current variations. In this paper, a current monitoring technique that overcomes the current variations problem in IDDQ testing is proposed. According to this, a core is partitioned into two subcircuits and the intrinsic leakage current of the one subcircuit is used to control the leakage current at the IDDQ sensing node of the other and vice-versa during test application. This way process related leakage current variations are taken into account and small defective currents turn to be detectable according to the needs of modern nanometer technologies. Additionally, a Built-In Current Sensor is presented, which exploits the proposed technique and experimental results are illustrated by its application on a fabricated chip.  相似文献   

3.
IDDQ or steady state current testing has been extensively used in the industry as a mainstream defect detection and reliability screen. The background leakage current has increased significantly with the advent of ultra deep submicron technologies. This increased background leakage noise makes it difficult to differentiate defect-free devices from those with defects that draw significantly small amount of currents. Therefore it is impossible to use single threshold IDDQ testing for today’s technologies. Several techniques that improve the resolution of IDDQ testing have been proposed to replace the single threshold detection scheme. However, even these techniques are suffering from loss of resolution that is required for detection of subtle defects in the presence of leakage currents in excess of a few mA. All these techniques use a single IDDQ measurement for detection and thus the scalability of these techniques is limited. Quiescent Signal Analysis (QSA) is a novel IDDQ defect detection and diagnosis technique that uses IDDQ measurements at multiple chip supply pads. Implicit in our methodology is a leakage calibration technique that scales the total leakage current over multiple simultaneous measurements. This helps in decreasing the background leakage component in individual measurements and thus increases the resolution of this technique to subtle defects. Defect detection is accomplished by applying linear regression analysis to the multiple supply port measurements and using outlier analysis to identify defective devices. The effectiveness of this technique is demonstrated in this paper using simulation experiments on portion of a production power grid. Predicted chip size and leakage values from the International Technology Roadmap for semiconductors (ITRS) are used in these experiments. One of the other major concerns expressed in ITRS is that of significant increase in intra-die process variations. The performance of the proposed technique in presence of such variations is evaluated using three different intra-die process variation distribution models.  相似文献   

4.
The effectiveness of single threshold I DDQ measurement for defect detection is eroded owing to higher and more variable background leakage current in modern VLSIs. Delta I DDQ is identified as one alternative for deep submicron current measurements. Often delta I DDQ is coupled with voltage and thermal stress in order to accelerate the failure mechanisms. A major concern is the I DDQ limit setting under normal and stressed conditions. In this article, we investigate the impact of voltage and thermal stress on the background leakage. We calculate I DDQ limits for normal and stressed operating conditions of 0.18 m n-MOSFETs using a device simulator. Intrinsic leakage current components of transistor are analyzed and the impact of technology scaling on effectiveness of stressed I DDQ testing is also investigated.  相似文献   

5.
A new design of a BIC sensor for current testing static CMOS circuits is proposed. It is based on a lateral BJT device which is easy to incorporate in any standard CMOS process. The design diverts a fraction of the I DDQ current from the cell under test and a resistive component generates a voltage proportional to I DDQ . Additional features are the possibility of continuous measure of i dd and increased speed of this sensor compared with sensors based on the current integration principle. The design does not have substrate currents due to the parasitic vertical BJTs. Experimental work on the sensor is reported.  相似文献   

6.
Built-in current sensor (BICS) is known to enhance test accuracy, defect coverage of quiescent current (IDDQ) testing method in CMOS VLSI circuits. For new deep-submicron technologies, BICSs become essential for accurate and practical IDDQ testing. This paper presents a new BICS suitable for power dissipation measurement and IDDQ testing. Although the BICS presented in this paper is dedicated to submicron technologies that require reduced supply voltage, it can also be used for applications and technologies requiring normal supply voltage. The proposed BICS has been extended for on-line measurement of the power dissipation using only an additional capacitor. Power dissipation measurement is important for safety-critical applications and battery-powered systems. A simple self-test approach to verify the functionality and accuracy of BICSs has also been introduced. The proposed BICS has been implemented and tested using an N-well CMOS 1.2 m technology. Practical results demonstrate that a very good measurement accuracy can be achieved.  相似文献   

7.
The quiescent current (I DDQ) consumed by a CMOS IC is a good indicator of the presence of a large class of defects. However, the effectiveness of I DDQ testing requires appropriate discriminability of defective and defect-free currents, and hence it becomes necessary to estimate the currents involved in order to design the I DDQ test. In this work, we present a method to estimate accurately the non-defective I DDQ consumption based on a hierarchical approach at electrical (cell) and logic (circuit) levels. This accurate estimator is used in conjunction with an ATPG (Automatic Test Pattern Generation) to obtain vectors having low/high defect-free I DDQ currents.  相似文献   

8.
9.
I DDQ testing: A review   总被引:9,自引:0,他引:9  
Quiescent power supply current (I DDQ ) testing of CMOS integrated circuits is a technique for production quality and reliability improvement, design validation, and failure analysis. It has been used for many years by a few companies and is now receiving wider acceptance as an industry tool. This article begins with a brief history of CMOS ICs to provide perspective on the origin of I DDQ testing. Next, the use of I DDQ testing for IC quality improvement through increased defect and fault detection is described. Then implementation issues are considered, including test pattern generation software, hardware instrumentation, limit setting, IC design guidelines, and defect diagnosis. An extended reference list is provided to help the reader obtain more information on specific aspects.  相似文献   

10.
Even high stuck-at fault coverage manufacturing test programs cannot assure high quality for CMOS VLSI circuits. Measurement of quiescent power supply current (I DDQ ) is a means of improving quality and reliability by detecting many defects that do not have appropriate representation in the stuck-at fault model. Since each I DDQ measurement takes significant time, a hierarchical fault analysis methodology is proposed for selecting a small subset of production test vectors for I DDQ measurements. A software system QUIETEST has been developed on the basis of this methodology. For two VLSI circuits QUIETEST selected less than 1% of production test vectors for covering all modeled faults that would have been covered by I DDQ measurement for all of the vectors. The fault models include leakage faults and weak faults for representing defects such as gate oxide shorts and certain opens.  相似文献   

11.
In this paper we present an experimental study on the effectivenessof incorporating at-speed I DDQ testing with traditionalBIST for improved test coverage. The high speed I DDQtesting is conducted using the differential built-in on-chip current sensor(BICS) that we have recently developed. Two test chips were designed andfabricated implementing a CMOS version of the 74181 ALU chip. In copies ofthis circuit we included the capability of activating 45 differentrealistic CMOS faults: inter- and intra-layer shorts andopens. We examine the fault coverage of both Boolean (voltage) testing andI DDQ testing for these realistic faults. An interestingfinding of our study is that I DDQ testing also detectedseveral of the open faults. Moreover, these include precisely those openfaults for which two pattern voltage tests can get invalidated because oftransient switching states. Our results show that combining both Boolean andcurrent testing does enhance test coverage in a BIST environment.  相似文献   

12.
I DDQ testing with precision measurement unit (PMU) was used to eliminate early life failures caused by CMOS digital ASICs in our products. Failure analysis of the rejected parts found that bridging faults caused by particles were not detected in incoming tests created by automatic test generation (ATG) for stuck-at-faults (SAF). The nominal 99.6% SAF test coverage required to release a design for production was not enough! This article shows how I DDQ testing and supplier process improvements affected our early life failure rates over a three year period. A typical I DDQ measurement distribution, effects of multiple I DDQ testing, and examples of the defects found are presented. The effects of less than 99.6% fault coverage after the I DDQ testing was implemented are reviewed. The methods used to establish I DDQ test limits and implement the I DDQ test with existing ATG testing are included. This article is a revision of one given at International Test Conference [1].  相似文献   

13.
Abnormal I DDQ (Quiescent V DD supply current) indicates the existence of physical damage in a circuit. Using this phenomenon, a CAD-based fault diagnosis technology has been developed to enhance the manufacturing yield of logic LSI. This method to detect the fatal defect fragments in several abnormalities identified with wafer inspection apparatus includes a way to separate various leakage faults, and to define the diagnosis area encircling the abnormal portions. The proposed technique progressively narrows the faulty area by using logic simulation to extract the logic states of the diagnosis area, and by locating test vectors related to abnormal I DDQ. The fundamental diagnosis way employs the comparative operation of each circuit element to determine whether the same logic state with abnormal I DDQ exists in normal logic state or not.  相似文献   

14.
The purpose of this paper is to introduce a new I DDQ measurement technique based on active successive approximations, called ASA-I DDQ. This technique has unique features facilitating a speed-up in I DDQ measurement. Experimental results suggest that a significant speed-up factor (up to 4) can be obtained over the QuiC-Mon technique. Such a speed-up is a key element in the replacement of single-threshold I DDQ testing since it amplifies the effectiveness of post-processing techniques.  相似文献   

15.
Algorithms for I DDQ measurement based diagnosis of bridging faults   总被引:1,自引:0,他引:1  
In the absence of information about the layout one is left with no alternative but to consider all bridging faults. An algorithm for diagnosis of a subset of such faults, viz. single two line bridging faults in static CMOS combinational circuits is presented. This algorithm uses results from I DDQ measurement based testing.Unlike known diagnosis algorithms, this algorithm does not use fault dictionaries, it uses only logic simulation and uses no fault simulation. It also uses SOPS, a novel representation of subsets of two-line bridging faults resulting in an efficient algorithm.In spite of the large number of faults that we consider, our experimental results point to the computational feasibility of I DDQ Measurement based diagnosis of single two line bridging faults. It also shows the effectiveness of reducing the set of possible faults using I DDQ measurements.A preliminary version of this work was presented at the 29th ACM/IEEE Design Automation Conference, 1992.Research Partially Supported by NSF Grant No. MIP-9102509.This work was performed when the author was with the Dept. of Computer Science, State University of New York at Buffalo.  相似文献   

16.
This work is part of our effort to find an alternative to I DDQ testing. Specifically, this paper presents our variance reduction post-processing approach in order to replace I DDQ. It describes our test procedure based on Delta I DDQ histograms. It shows how this test procedure can help to reduce variance, optimize test resources and reduce the impact of process drifting and resolution loss caused by the expected I DDQ growth. Another practical aspect is discussed, namely the use of the proposed test procedure in a production test. We propose a new distribution model and revisit some experimental data, which provides a better understanding of the relationship between defect and fault. The results obtained so far confirm the pertinence of our test approach and the necessity of keeping current testing alive.  相似文献   

17.
I DDQ measurement is a time consuming process. Thus, reducing the number of I DDQ measurements have a great impact on the test time. Carefully selecting a few I DDQ measurement points is therefore an important problem. This problem has been studied for detecting leakage faults but not for bridging faults. We present novel algorithms to select I DDQ measurement points to detect bridging faults. Experimental results obtained are very encouraging. The method can also be used: by test generators to compress I DDQ test sets; and to maximize the fault coverage when a fixed number of measurement points are given.Research supported by NSF Grant No. MIP-9102509.  相似文献   

18.
In this article, we outline a RAM test methodology taking into accountI DDQ and voltage based March tests. RAM test cost forms a significantly large portion of its total production cost and is projected to increase even further for future RAM generations.I DDQ testing can be utilized to reduce this cost. However, owing to architectural and operational constrains of RAMs, a straight forward application ofI DDQ testing has very limited defect detection capability. These constrains are removed by creating anI DDQ test mode in RAMs. All bridging defects in RAM matrix, including the gate oxide defects, are detected by fourI DDQ measurements. TheI DDQ test is then supplemented with voltage based March test to detect the defects (opens, data retention) that are not detectable usingI DDQ technique. The combined test methodology reduces the algorithmic test complexity for a given SRAM fault model from 16n to 5n+4I DDQ measurements.  相似文献   

19.
The usability of I DDQ testing is limited by the subthreshold currents of the low-V T, submicron MOS transistors in the low bias voltage circuits. The paper addresses the cooling of the chip in order to overcome this problem. Experimental results concerning the effect of cooling on the threshold voltage and subthreshold current are presented in the range of –75...25 Centigrade. The subthreshold currents decrease by a factor of about 100–1000 by cooling-down the chip to –75 Centigrade.  相似文献   

20.
Recently there has been renewed interest in fault detection in static CMOS circuits through I DDQ monitoring. This work shows that, in addition to fault detection, accurate fault diagnosis may be performed using a combination of current and voltage observations. The proposed system combines a simple single fault model for test generation with a more realistic multiple defect model for diagnosis, and as a result requires only minor modifications to existing stuck-at fault ATPG software. The associated hardware is sufficiently simple that on-board implementation is possible. Experimental results demonstrate the effectiveness of the method on a standard-cell ASIC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号