首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The estimation of test metrics such as defect level, test yield or yield loss is important in order to quantify the quality and cost of a test approach. For design-for-test purposes, this is important in order to select the best test measurements but this must be done at the design stage, before production test data is made available. In the analogue domain, previous works have considered the estimation of these metrics for the case of single faults, either catastrophic or parametric. The consideration of single parametric faults is sensitive for a production test technique if the design is robust. However, in the case that production test limits are tight, test escapes resulting from multiple parametric deviations may become important. In addition, aging mechanisms result in field failures that are often caused by multiple parametric deviations. In this paper, we will consider the estimation of analogue test metrics under the presence of multiple parametric deviations (or process deviations) and under the presence of faults. A statistical model of a circuit is used for setting test limits under process deviations as a trade-off between test metrics calculated at the design stage. This model is obtained from a Monte Carlo circuit simulation, assuming Gaussian probability density functions (PDFs) for the parameter and performance deviations. After setting the test limits considering process deviations, the test metrics are calculated under the presence of catastrophic and parametric single faults for different potential test measurements. We will illustrate the technique for the case of a fully differential operational amplifier, proving the validity in the case of this circuit of the Gaussian PDF.
Luis RolíndezEmail:

Ahcène Bounceur   received the Engineer degree in Operations Research from the Bejaia University (Algeria) in 2002, the Ms.C. degree in Operations Research, Combinatorial and Optimization from the école Nationale Supérieure d’Informatique et de Mathématiques Appliquées de Grenoble (ENSIMAG), Grenoble (France) in 2003 and the Ph.D. degree in Micro and nano electronics from Institut National Polytechnique de Grenoble in 2007. Currently, he is a Post-Doc Student at TIMA Laboratory, Grenoble. His current research interests are development of CAT tools for analogue and mixed-signal testing. He is a member of the IEEE. Salvador Mir   has an Industrial Engineering (Electrical, 1987) degree from the Polytechnic University of Catalonia, Barcelona, Spain, and M.Sc. (1989) and Ph.D. (1993) degrees in Computer Science from the University of Manchester, UK. He is a researcher of Centre National de la Recherche Scientifique, France, and he is leading the RMS (Reliable Mixed-signal Systems) Group at TIMA Laboratory in Grenoble. He is the author of many research papers and editor of two books on silicon microsystems. His research interests include analogue, mixedsignal, RF and microsystem design and test, and applications of Artificial Intelligence to Computer-Aided Design. Emmanuel Simeu   received Electrical Engineering degree from Hassania School of Engineering Sciences of Casablanca in 1987, DEA and PhD in Automatic Control and Theory of Systems from National Polytechnic Institute of Grenoble (INPG) in 1988 and 1992 respectively. He receives DHDR in Physic Science from Joseph Fourier University of Grenoble in 2005. Prior to joining TIMA Laboratory, Dr. Simeu was an associate professor in ISAR Valence and researcher in LAG from 1992 to 1995. He is currently an Associate Professor of Automatic Control and Reliability Analysis at Joseph Fourier University of Grenoble and researcher in the RMS Group of TIMA Laboratory. His research interests include complex system modelling, embedded diagnosis and monitoring of analogue, digital and mixed-signal systems and reliability analysis for integrated systems. Luis Rolíndez   has a M.Sc. (2003) degree in Electrical Engineering from the University of Zaragoza, Spain, and a Ph.D. (2007) degree in Microelectronics from the National Polytechnic Institute ofGrenoble, France.He is now with STMicroelectronics (Central CAD & Design Solutions) at Crolles, France, as an analogue and mixed-signal designer. His research interests include analogue integrated circuit design, analogue and mixed-signal BIST techniques, simulation of highly integrated mixed-signal SoC and silicon debug.  相似文献   

3.
Dynamic effects in the detection of bridging faults in CMOS circuits are taken into account showing that a test vector designed to detect a bridging may be invalidated because of the increased propagation delay of the faulty signal. To overcome this problem, it is shown that a sequence of two test vectors < T 0, T 1 >, in which the second can detect a bridging fault as a steady error, can detect the fault independently of additional propagation delays if T0 initializes the faulty signal to a logic value different from the fault-free one produced by T 1. This technique can be conveniently used both in test generation and fault simulation. In addition, it is shown how any fault simulator able to deal with FCMOS circuits can be modified to evaluate the impact of test invalidation on the fault coverage of bridging faults. For any test vector, this can be done by checking the state of the circuit produced by the previous test vector.  相似文献   

4.
Differential fault simulation for sequential circuits   总被引:1,自引:0,他引:1  
A new fast fault simulation algorithm called differential fault simulation, DSIM, for synchronous sequential circuits is described. Unlike concurrent fault simulation, for every test vector, DSIM simulates the good machine and each faulty machine separately, one after another, rather than simultaneously simulating all machines. Therefore, DSIM dramatically reduces the memory requirement and the overhead in the memory management in concurrent fault simulation. Also, unlike serial fault simulation, DSIM simulates each machine by reprocessing its differences from the previously simulated machine. In this manner, DSIM is more efficient than serial fault simulation. Experiments have shown that DSIM runs 3 to 12 times faster than an existing concurrent fault simulator. In addition, owing to the simplicity of this algorithm, DSIM is very easy to implement and maintain. An implementation consists of only about 300 lines of C language statements added to the event-driven true-value simulator in an existing sequential circuit test generator program, STG3. Currently DSIM uses the zero-delay timing model. The addition of alternative delay models is under development.  相似文献   

5.
Switched current (SI) circuits use analogue memory cells as building blocks. In these cells, like in most analogue circuits, there are hard-to-detect faults with conventional test methods. A test approach based on a built-in dynamic current sensor (BIDCS), whose detection method weights the highest frequency components of the dynamic supply current of the circuit under test, makes possible the detection of these faults, taking into account the changes in the slope of the dynamic supply current induced by the fault. A study of the influence of these faults in neighbouring cells helps to minimize the number of BICS needed in SI circuits as is shown in two algorithmic analogue-to-digital converters. Yolanda Lechuga received a degree in Industrial Engineering from the University of Cantabria (Spain) in April 2000. Since then, she has been collaborating with the Microelectronics Engineering Group at the University of Cantabria, in the Electronics Technology, Systems and Automation Engineering Department. Since October 2000 she has been a post-graduate student, to be appointed as lecturer at this university, where she is working in her Ph.D. She is interested in supply current test methods, fault simulation, BIST and design for test of mixed signal integrated circuits. Román Mozuelos received a degree in Physics with electronics from the University of Cantabria, Spain. From 1991 to 1995 he was working on the development of quartz crystal oscillators. Currently, he is a Ph.D. student and an assistant teacher at the University of Cantabria in the Department of Electronics Technology. His interests include mixed-signal design and test, fault simulation, and supply current monitoring. Miguel A. Allende received his graduate degree in 1985 and Ph.D. degree in 1994, both from the University of Cantabria, Santander, Spain. In 1996, he became an Assistant Professor of Electronics Technology at the same Institution, where he is a member of the Microelectronics Engineering Group at the Electronics Technology, Systems and Automation Engineering Department in the Industrial and Telecommunication Engineering School. His research interests include design of VLSI circuits for industrial applications, test and DfT in digital VLSI communication circuits, and power supply current test of mixed, analogue and digital circuits. Mar Martínez received her graduate degree and Ph.D. from the University of Cantabria (Spain) in 1986 and 1990. She has been Assistant Professor of Electronic Technology at the University of Cantabria (Spain) since 1991. At present, she is a member of the Electronics Technology, Systems and Automation Engineering Department in the Industrial and Telecommunication Engineering School. She has participated in several EU and Spanish National Research Projects. Her main research interest is mixed, analogue and digital circuit testing, using techniques based on supply current monitoring. She is also interested in test and design for test in digital VLSI circuits. Salvador Bracho obtained his graduate degree and Ph.D. from the University of Seville (Spain) in 1967 and 1970. He was appointed Professor of Electronic Technology at the University of Cantabria (Spain) in 1973, where, at present, he is a member of the Electronics Technology, Systems and Automation Engineering Department in the Industrial and Telecommunication Engineering School. He has participated, as leader of the Microelectronics Engineering Group at the University of Cantabria, in more than twenty EU and Spanish National Research Projects. His primary research interest is in the area of test and design for test, such as full scan, partial scan or self-test techniques in digital VLSI communication circuits. He is also interested in mixed-signal, analogue and digital test, using methods based on power supply current monitoring. Another research interest is the design of analogue and digital VLSI circuits for industrial applications. Prof. Bracho is a member of the Institute of Electrical and Electronic Engineers.  相似文献   

6.
A novel parallel sequence fault simulation (PSF) algorithm for synchronous sequential circuits is presented. The algorithm successfully extend the parallel pattern method for combinational circuits to sequential circuits by proposing a multiple-pass mechanism to overcome the state dependency in sequential circuits. The fault simulation is performed in parallel by partitioning the entire sequence into subsequences of equal length. Furthermore, techniques are developed to minimize the number of simulation passes. Notably, two compact counters, C x and C d , are proposed to faciliate the early stabilization detection of faulty circuit simulation with minimum space overhead. The experimental results on the benchmark circuits show that the speedup ratio over a serial sequence fault simulator based on ROOFS is 9.16 on average for pseudo random vectors. The parallel sequence algorithm of PSF is especially adaptable to parallel and distributed simulation which exploits sequence partition.  相似文献   

7.
Fault Modeling and Simulation Using VHDL-AMS   总被引:1,自引:0,他引:1  
Fault simulation is an accepted part of the test generation procedure for digital circuits. With complex analog and mixed-signal integrated circuits, such techniques must now be extended. Analog simulation is slow and fault simulation can be prohibitively expensive because of the large number of potential faults. We describe how the number of faults to be simulated in an analog circuit can be reduced by fault collapsing, and how the simulation time can be reduced by behavioral modeling of fault-free and faulty circuit blocks. These behavioral models can be implemented in SPICE or in VHDL-AMS and we discuss the merits of each approach. VHDL-AMS does potentially offer advantages in tackling this problem, but there are a number of computational difficulties to be overcome.  相似文献   

8.
Most industrial digital circuits contain three-state elements besides pure logic gates. This paper presents a gate delay fault simulator for combinational circuits that can handle three-state elements like bus drivers, transmission gates and pulled busses. The well known delay faults--slow-to-rise and slow-to-fall--are considered as well as delayed transitions from isolating signal state high impedance to binary states 0 and 1 and vice versa. The presented parallel delay fault simulator distinguishes between non-robust, robust and hazard free tests and determines the quality of a test. Experimental results for ISCAS85/89 benchmark circuits are presented as well as results for industrial circuits containing three-state elements.  相似文献   

9.
A new hierarchical modeling and test generation technique for digital circuits is presented. First, a high-level circuit model and a bus fault model are introduced—these generalize the classical gate-level circuit model and the single-stuck-line (SSL) fault model. Faults are represented by vectors allowing many faults to be implicitly tested in parallel. This is illustrated in detail for the special case of array circuits using a new high-level representation, called the modified pseudo-sequential model, which allows simultaneous test generation for faults on individual lines of a multiline bus. A test generation algorithm called VPODEM is then developed to generate tests for bus faults in high-level models of arbitrary combinational circuits. VPODEM reduces to standard PODEM if gate-level circuit and fault models are used. This method can be used to generate tests for general circuits in a hierarchical fashion, with both high- and low-level fault types, yielding 100 percent SSL fault coverage with significantly fewer test patterns and less test generation effort than conventional one-level approaches. Experimental results are presented for representative circuits to compare VPODEM to standard PODEM and to random test generation techniques, demonstrating the advantages of the proposed hierarchical approach.  相似文献   

10.
This article proposes a 7-valued logic appropriate for test generation and fault simulation, in the area of robust tests for gate delay faults, and a straightforward simulation strategy for sequential circuits. It is shown that a purely qualitative logic of robust testing is inadequate for circuits with edge-triggered flip-flops. The relation between the 7-valued logic and the similar logic proposed before by Smith, Schulz et al., and Lin and Reddy are discussed.  相似文献   

11.
12.
模拟电路故障诊断的小波方法   总被引:2,自引:1,他引:1  
利用小波变换与神经网络相结合的(WNT)方法,将小波作为消噪工具,对信号进行消噪和小波多尺度分解,提取特征信息。并从函数型和权值型小波神经网络中寻找最优故障辨识器,提出了模拟电路故障诊断的系统方法。本文详述了其诊断原理及诊断步骤,并给出了诊断实例。  相似文献   

13.
曾芷德  曹贺锋 《电子学报》2000,28(11):102-105
本文首先剖析了有限回溯测试模式产生(FBTPG)方法的实质,然后在深入分析三种ATPG系统的C-B曲线的实验数据的基础上,提出故障模拟对测试生成的综合调节效应,为FBTPG方法的有效性提供了理论依据.最后以ISCAS-85和ISCAS-89电路为基础,给出了FBTPG与随机测试生成、确定性测试生成和商用ATPG系统FlexTest的实验比较结果,从而论证了FBTPG方法处理超大规模时序电路的有效性.  相似文献   

14.
提出了基于故障映射的4值并行故障仿真方法.这一方法首先把电路划分成无扇出区域和扇出茎区域,然后将非扇出茎故障映射为扇出茎故障,减少了需要显式并行仿真的故障数目,提高了仿真器的性能.实验结果验证了文中方法的有效性.  相似文献   

15.
We present a technique to statistically estimate path-delay fault coverage for synchronous sequential circuits. We perform fault-free simulation using a multivalue algebra and accumulate signal transition statistics, from which we calculate controllabilities of all signals and sensitization probabilities for all gates and flip-flops. We use a rated clock testing model where all time frames operate at the rated clock. We obtain path observabilities either by enumerating paths in the all-paths method, or by a nonenumerative method considering only the longest paths. The path-delay fault detectability is the product of observabilities of signals on paths from primary inputs (PIs) or pseudo-primary inputs (PPIs) to primary outputs (POs) or pseudo-primary outputs (PPOs), and the controllability on the corresponding PI or PPI. We use the optimistic update rule of Bose et al. for updating latches during logic simulation. When compared with exact fault simulation, the average absolute deviation in our statistical fault coverage estimation technique is 1.23% and the very worst absolute deviation was 6.59%. On average, our method accelerates delay fault coverage computation four times over an exact path delay fault simulator.  相似文献   

16.
We present a fault simulator for synchronous sequential circuits that combines the efficiency of three-valued logic simulation with the exactness of a symbolic approach. The simulator is hybrid in the sense that three different modes of operation—three-valued, symbolic and mixed—are supported. We demonstrate how an automatic switching between the modes depending on the computational resources and the properties of the circuit under test can be realized, thus trading off time/space for accuracy of the computation. Furthermore, besides the usual Single Observation Time Test Strategy (SOT) for the evaluation of the fault coverage, the simulator supports evaluation according to the more general Multiple Observation Time Test Strategy (MOT). Numerous experiments are given to demonstrate the feasibility and efficiency of our approach. In particular, it is shown that, at the expense of a reasonable time penalty, the exactness of the fault coverage computation can be improved even for the largest benchmark functions.  相似文献   

17.
The rapidly evolving role of analog signal processing has spawned off a variety of mixed-signal circuit applications. The integration of the analog and digital circuits has created a lot of concerns in testing these devices. This paper presents an efficient unified fault simulation platform for mixed-signal circuits while accounting for the imprecision in analog signals. While the classical stuck-at fault model is used for the digital part, faults in the analog circuit cover catastrophic as well as parametric defects in the passive and active components. A unified framework is achieved by combining a discretized representation of the analog circuit with the Z-domain representation of the digital part. Due to the imprecise nature of analog signals, an arithmetic distance based fault detection criterion and a statistical measure of digital fault coverage are proposed.This research was supported by the National Science Foundation under grant MIP-9222481.  相似文献   

18.
We present a new probabilistic fault coverage model that is accurate, simple, predictive, and easily integrated with the normal design flow of built-in self-test circuits. The parameters of the model are determined by fitting the fault simulation data obtained on an initial segment of the random test. A cost-based analysis finds the point at which to stop fault simulation, determine the parameters, and estimate fault coverage for longer test lengths. Experimental results on benchmark circuits demonstrate the effectiveness of this approach in making accurate predictions at a low computational cost. As compared to the cost of fault-simulating all the test vectors, the savings in computational time for larger circuits ranged from four to fourteen times. We also present an analysis of the mean and the variance of the fault coverage achieved by a random test of a given length. This analysis and simulation results demonstrate that while the mean coverage is determined by the distribution of the detectabilities of individual faults, the dual distribution of fault coverage of individual test vectors determines the variance.  相似文献   

19.
The paper presents a test stimulus generation and fault simulation methodology for the detection of catastrophic faults in analog circuits. The test methodology chosen for evaluation is RMS AC supply current monitoring. Tests are generated and evaluated taking account of the potential fault masking effects of process spread on the faulty circuit responses. A new test effectiveness metric of probability of detection is defined and the application of the technique to an analog multiplier circuit is presented. The fault coverage figures are therefore more meaningful than those obtained with a fixed threshold.  相似文献   

20.
This paper presents a hierarchical fault modeling approach for catastrophic as well as out-of-specification parametric faults in analog circuits. These include both, ac and dc faults in passive as well as active components. The fault models are based on functional error characterization. Case studies based on CMOS and nMOS operational amplifiers are discussed, and a full listing of derived behavioral fault models is presented. These fault models are then mapped to the faulty behavior at the macro-circuit level. Application of these fault models in an efficient fault simulator for analog circuits is also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号