首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrocracking and hydrodesulfurization (HDS) of n-heptane containing 0.2 mole% dibenzothiophene (DBT) were performed simultaneously using NiPtMo catalysts supported on HZSM-5, LaY and γ-Al2O3 in a high pressure fixed bed reactor. Molybdenum played an important role in both hydrocracking and hydrodesulfurization (HDS). We found that the sulfur compound, dibenzothiophene (DBT). in the reactant was adsorbed on a molybdenum site and converted to hydrogen sulfide so that the active sites of the catalysts for hydrocracking were less poisoned by DBT and the conversion of n-heptane over molybdenum impregnated catalyst was higher than that over molybdenum-free catalyst. The crystal structures of the molybdenum supported on the zeolite and γ-Al2O3 were mainly MoO2.5 (OH)0.5[021] and MoO3[210] respectively as shown by XRD analysis. The structure of MoO2.5(OH)0.5 was easily reduced to MoS2[003] during the reaction. After the reaction of 100 hours over the catalyst supported on γ-Al2O3 the crystal structure of MoO3[210] partially changed to MoO3[300] and the structure of MoS2[003] was not observed. Because of the reactant shape selectivity of zeolite, the acid and the metal sites in the intracrystalline of the catalysts supported on zeolites were less poisoned by DBT. Therefore, both hydrocracking and HDS using n-heptane containing 0.2 mole% of DBT were successfully demonstrated over the prepared catalysts.  相似文献   

2.
Deactivation of palladium and platinum catalysts due to coke formation was studied during hydrogenation of methyl esters of sunflower oil. The supported metal catalysts were prepared by impregnating γ-alumina with either palladium or platinum salts, and by impregnating α-alumina with palladium salt. The catalysts were reused for several batch experiments. The Pd/γ-Al2O3 catalyst lost more than 50% of its initial activity after four batch experiments, while the other catalysts did not deactivate. Samples of used catalysts were cleaned from remaining oil by repeated extractions with methanol, and the amount of coke formed on the catalysts was studied by temperature-programmed oxidation. The deactivation of the catalyst is a function of both the metal and the support. The amount of coke increased on the Pd/γ-Al2O3 catalyst with repeated use, but the amount of coke remained approximately constant for the Pt/γ-Al2O3 catalyst. Virtually no coke was detected on the Pd/α-Al2O3 catalyst. The formation of coke on Pd/α-Al2O3 may be slower than on the Pd/γ-Al2O3 owing to the carrier’s smaller surface area and less acidic character. The absence of deactivation for the Pt/γ-Al2O3 catalyst may be explained by slower formation of coke precursors on platinum compared to palladium.  相似文献   

3.
Supported tungsten phosphide catalysts were prepared by temperature-programmed reduction of their precursors (supported phospho-tungstate catalysts) in H2 and characterized by X-ray diffraction (XRD), BET, temperature-programmed desorption of ammonia (NH3-TPD) and X-ray photoelectron spectroscopy (XPS). The reduction-phosphiding processes of the precursors were investigated by thermogravimetry and differential thermal analysis (TG-DTA) and the suitable phosphiding temperatures were defined. The hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) activities of the catalysts were tested by using thiophene, pyridine, dibenzothiophene, carbazole and diesel oil as the feedstock. The TiO2, γ-Al2O3 supports and the Ni, Co promoters could remarkably increase and stabilize active W species on the catalyst surface. A suitable amount of Ni (3%–5%), Co (5%–7%) and V (1%–3%) could increase dispersivity of the W species and the BET surface area of the WP/γ-Al2O3 catalyst. The WP/γ-Al2O3 catalyst possesses much higher thiophene HDS and carbazole HDN activities and the WP/TiO2 catalyst has much higher dibenzothiophene (DBT) HDS and pyridine HDN activities. The Ni, Co and V can obviously promote the HDS activity and inhibit the HDN activity of the WP/γ-Al2O3 catalyst. The G-Ni5 catalyst possesses a much higher diesel oil HDS activity than the sulphided industrial NiW/γ-Al2O3 catalyst. In general, a support or promoter in the WP/γ-Al2O3 catalyst which can increase the amount and dispersivity of the active W species can promote its HDS and HDN activities.  相似文献   

4.
Partial oxidation of methane (POM) was systematically investigated in a fixed bed reactor over 12 wt% Ni catalysts supported on α-A12O3, γ-A12O3 and θ-A12O3 which were prepared at different conditions. Results indicate that the catalytic activity toward POM strongly depends on the BET surface area of the support. All the Ni/ θ-Al2O3 catalysts showed high activity toward POM due to the less formation of inactive NiAl2O4 species, the existence of NiO, species and stable θ-Al2O3 phase. Although Ni/γ-Al2O3 showed the highest activity toward POM, long-time stability cannot be expected as a result of the deterioration of the support at higher temperature, which is revealed from BET results. From the reaction and characterization results, it is inferred that the optimal conditions for the preparation of θ-Al2O3 are 1,173 K and 12 h.  相似文献   

5.
Park  Joo-Hyoung  Cho  Hyun Ju  Park  Sang Jun  Nam  In-Sik  Yeo  Gwon Koo  Kil  Jeong Ki  Youn  Young Kee 《Topics in Catalysis》2007,42(1-4):61-64
Co/Pt/Ba/γ-Al2O3, Co/Ba/γ-Al2O3, Pt/Ba/γ-Al2O3, Co/Pt/γ-Al2O3, Ba/γ-Al2O3, Pt/γ-Al2O3, and Co/γ-Al2O3 type catalysts were prepared by a conventional impregnation method, and their NO x storage capacities were evaluated by colorimetric assay. Co-containing catalysts had a higher NO x storage capacity than that of Co-free counterparts. The role of each component, especially Co, for the catalysts prepared was investigated by using in-situ FTIR. The high NO x storage for Co-containing catalysts including Co/Ba/γ-Al2O3 and Co/Pt/Ba/γ-Al2O3 is mainly due to the formation of Co3O4 on the catalyst surface identified by XAFS.  相似文献   

6.
The low-temperature self-hydrogenation (disproportionation) of cyclohexene was used as a probe reaction to correlate the reactivity of Co/Pt(111) bimetallic surfaces with supported Co/Pt/γ-Al2O3 catalysts. Temperature-programmed desorption (TPD) experiments show that cyclohexene undergoes self-hydrogenation on the ~1 ML Co/Pt(111) surface at ~219 K, which does not occur on either pure Pt(111) or a thick Co film on Pt(111). Supported catalysts with a 1:1 atomic ratio of Co:Pt were synthesized on a high surface area γ-Al2O3 to verify the bimetallic effect on the self-hydrogenation of cyclohexene. EXAFS experiments confirmed the presence of Co–Pt bonds in the catalyst. Using FTIR in a batch reactor configuration, the bimetallic catalyst showed a higher activity toward the self-hydrogenation of cyclohexene at room temperature than either Pt/γ-Al2O3 or Co/γ-Al2O3 catalysts. The comparison of Co/Pt(111) and Co/Pt/γ-Al2O3 provided an excellent example of correlating the self-hydrogenation activity of cyclohexene on bimetallic model surfaces and supported catalysts.  相似文献   

7.
An efficient process to remove organic sulfur compounds from model fuel has been explored. Dibenzothiophene (DBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT) can be completely oxidized into their corresponding sulfones by H2O2 over 14 wt.% MoO3/γ-Al2O3 catalyst under mild conditions in 15 min. The effects of solvent, initial sulfide concentration, loading of MoO3 and amount of catalyst on oxidative removal of DBT were studied. The employments of solvents have decreased the reaction rate of DBT, which can be attributed to the competitive adsorption between the sulfide and solvent. The oxidative reactivity increases in the order of thiophene (Th) < benzothiophene (BT) < DBT < 4, 6-DMDBT. The catalyst can be regenerated by methanol washing at 333 K.  相似文献   

8.
The preferential CO oxidation (PROX) in the presence of excess hydrogen was studied over Pt–Ni/γ-Al2O3. CO chemisorption, X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectroscopy and temperature-programmed reduction were conducted to characterize active catalysts. The co-impregnated Pt–Ni/γ-Al2O3 was superior to Pt/Ni/γ-Al2O3 and Ni/Pt/γ-Al2O3 prepared by a sequential impregnation of each component on alumina support. The PROX activity was affected by the reductive pretreatment condition. The pre-reduction was essential for the low-temperature PROX activity. As the reduction temperature increased above 423 K, the CO2 selectivity decreased and the atomic percent of Ni in the bimetallic phase of Pt–Ni increased. This catalyst exhibited the high CO conversion even in the presence of 2% H2O and 20% CO2 over a wide reaction temperature. The bimetallic phase of Pt–Ni seems to give rise to high catalytic activity for the PROX in H2-rich stream.  相似文献   

9.
Basile  F.  Gambatesa  A.  Fornasari  G.  Livi  M.  Vaccari  A. 《Topics in Catalysis》2007,42(1-4):165-169
A catalyst for NOx storage/reduction was prepared to improve the activity of Ba–Pt/γ-Al2O3 by replacing Ba with a mixture of Ba and Mg. The catalyst was prepared by impregnating Pt and then co-impregnating Ba and Mg (Mg:Ba molar ratio = 1) on commercial γ-Al2O3. The tests have been carried out in the presence of CO2 at temperatures between 200 and 400 °C in order to understand the role of both the feed and various alkaline-earth metals. The storage capacity of the two catalysts was different like the mechanism in the reduction process.  相似文献   

10.
An efficient method for improving the catalytic properties of unsupported Ni/MoS2 catalysts is mixing thiometalate precursors applying the appropriate precursors and thermal conditions. High active catalysts for the hydrodesulfurization (HDS) of dibenzothiophene (DBT) are prepared by the controlled decomposition of physical mixtures of Ni(diethylentriamine)2MoS4 (NDTA-TM) and [(Propyl)4N)]2MoS4 (TPA-TM). The catalysts with a higher content of NDTA-TM are very active with a high selectivity for the direct desulfurization pathway (DDS) due to the synergistic effect of nickel. In addition the presence of a large amount of carbon may produce single-slabs of nickel promoted carbon containing molybdenum sulfides. The activity enhancement is attributed to an increased number of NiMoS active sites originated by the chemical interaction between the precursors NDTA-TM and TPA-TM during the mixing procedure. Furthermore, the carbon content in the final products is related to the enhancement of the activity and the preference of the DDS pathway. The controlled decomposition of mixtures of NDTA-TM + TPA-TM yields catalysts which are about twofold more active than an industrial NiMo/Al2O3 catalyst. This improvement may be attributed to an intense interaction of the precursors during the synthesis causing a re-dispersion of nickel atoms from NDTA-TM over the surface of carbon containing molybdenum sulfide provided by the precursor TPA-TM, increasing the amount of active sites. The catalysts from mixtures of (NH4)2MoS4 (A-TM) and NDTA-TM behave similarly to the pure precursors.  相似文献   

11.
The activity of the vanadium magnesium binary oxides supported on Cact, SiO2, γ-Al2O3 and ZnO in the dehydrogenation of isobutane to isobutene under the carbon dioxide or inert gas atmosphere was investigated. The highest isobutene yield (34.8%) was obtained over active carbon supported catalyst. The role of carbon dioxide in the dehydrogenation process was determined on the basis of additional tests: the RWGS reaction, gasification of coke and regeneration of partially reduced catalysts. The temperature-programmed techniques (TPR-H2, TPD-NH3 and TPD-CO2) were used to characterize the catalysts.  相似文献   

12.
The incorporation effect of tungsten as an activity‐promotional modifier into the Ni‐promoted Mo/γ‐Al2O3 catalyst was studied. Series of W‐incorporated catalysts with different content of tungsten were prepared by changing the impregnation order of nickel and tungsten onto a base Mo/γ‐Al2O3. Catalytic activities were measured from the atmospheric reactions of thiophene hydrodesulfurization (HDS) and ethylene hydrogenation (HYD). The HDS and HYD activities of the WMo/γ‐Al2O3 catalysts (WM series) initially increased and subsequently decreased with increasing content of tungsten as compared with those of their base Mo/γ‐Al2O3. The maximal activity promotion occurred at the W/(W + Mo) atomic ratio 0.025. For the Ni‐promoted Mo/γ‐Al2O3 catalysts, the effect of W incorporation was greatly dependent on the impregnation order of tungsten. The catalysts prepared by impregnating Ni onto the WMo/γ‐Al2O3 catalysts showed the same trend of activity promotion as for the WM series, while those by impregnating W onto a NiMo/γ‐Al2O3 catalyst resulted in lower activities than their base NiMo/γ‐Al2O3 catalyst. To characterize the catalysts, temperature‐programmed reduction and low‐temperature oxygen chemisorption were conducted. The effects of W incorporation on the NiMo‐based catalysts were discussed in reference to those on the CoMo‐based catalysts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The synthesis of thiophene from the reaction of n-Butanol and carbon disulfide was performed in a fixed-bed reactor in the presence of promoted chromia on γ-alumina. A high selectivity to thiophene (87%) and a long lifetime of the catalyst (55 hour) was obtained at 450 °C with a 1: 6 n-Butanol to carbon disulfide molar ratio and LHSV 1 h−1 over γ-Al2O3 promoted by 7% K2CO3 with 15% Cr2O3 loaded. The catalytic behavior of these catalysts can be attributed to their dual-functional acidity and dehydrogenating and cyclized properties.  相似文献   

14.
Platelet and fishbone carbon nanofibers (CNFs) have been used as supports for cobalt Fischer–Tropsch catalysts. The activity and selectivity of the CNF supported catalysts have been studied at 483 K, 20 bar, and H2/CO = 2.1, and compared with corresponding activity and selectivity for α-Al2O3 and γ-Al2O3 supported cobalt catalysts. The platelet CNF supported catalyst has demonstrated high activity and high selectivity to C5+ hydrocarbons, with activity comparable with Co/γ-Al2O3 and selectivity comparable with Co/α-Al2O3.  相似文献   

15.
Supported Rh catalysts have been developed for selective H2 production at low temperatures. Ethanol dehydration is favorable over either acidic or basic supports such as γ-Al2O3 and MgAl2O4, while ethanol dehydrogenation is more favorable over neutral supports. CeO2–ZrO2-supported Rh catalysts were found to be especially effective for hydrogen production. We focused on a support prepared by a co-precipitation method having composition Ce0.8Zr0.2O2. A 2%Rh/Ce0.8Zr0.2O2 catalyst, prepared via impregnation without pre-calcination of support, exhibited the highest H2 yield at 450 °C among various supported Rh catalysts evaluated in this study. This may be due to both the strong interaction between Rh and Ce0.8Zr0.2O2 and the high oxygen transfer rate favoring reforming of acetaldehyde instead of methane production.  相似文献   

16.
FTIR and pulse thermal analysis were applied to investigate catalysts containing Pt (1 wt%)/Ba (17 wt%) supported on -Al2O3, SiO2 and ZrO2. The aim was to learn how the support material affects the thermal stability of barium carbonate and its activity in the reaction to bulk Ba(NO3)2. The lower thermal stability of BaCO3 in alumina supported samples was found to influence the formation of barium nitrate during the NO x storage process. Quantification of Ba(NO3)2 formed during NO x storage indicated that for alumina supported catalysts only ca. 30% of barium present in the sample is involved in the storage process. The low thermal stability found for alumina supported barium nitrite excludes its role in the formation of barium nitrate during interaction of NO x with the catalyst at 300 °C. The studies indicate that -Al2O3 plays a major role in influencing the thermal stability of BaCO3 and Ba(NO3)2. This finding seems to be relevant for the higher activity of -Al2O3-supported catalysts in NO x storage reduction reactions.  相似文献   

17.
Microwave plasma-assisted catalytic reduction of SO2 by CO was studied over four catalysts. The activities of the four catalysts under microwave plasma decreased in the order of CoO/γ-Al2O3>>SnO2> copper wires > iron wires, which was consistent with the results under conventional heating. By comparing the activity of CoO/γ-Al2O3 catalyst in the microwave plasma mode with that in the conventional mode, it is demonstrated that the temperature at which the full SO2 conversion was obtained in the microwave plasma mode was about 200 °C lower than that under the conventional heating mode. Moreover, an increase of space velocity had little effect on SO2 conversion and sulfur selectivity under microwave plasma; while under conventional heating mode, both SO2 conversion and sulfur selectivity significantly decreased with an increase of space velocity.  相似文献   

18.
The activity and selectivity in the catalytic reduction of NO by a mixture of CO and H2 of three PdO-MoO3/-Al2O3 catalysts are compared in the presence of varying amounts of oxygen at reaction temperatures from 100 to 550°C. The catalysts were prepared by different methods and contain about 2% Mo and 2% Pd. Results are compared with those for PdO/-Al2O3, PdO-MoO3/-Al2O3 containing 2% Pd and 20% Mo, and a commercial Pt-Rh catalyst. The PdO-MoO3/-Al2O3 catalysts are more active for the selective reduction of NO to N2 and N2O than PdO/-Al2O3 under slightly oxidizing conditions at temperatures from 300 to 550°C. At these reaction conditions, the fresh PdO-MoO3/-Al2O3 catalysts are comparable with a commercial Pt-Rh catalyst. The improved activity of PdO-MoO3/-Al2O3 relative to PdO/-Al2O3 is believed to be due to the interaction between Pd and Mo. The effect of O2 on the activity and selectivity of these catalysts is different in the reduction of NO by H2, by CO, and by a mixture of H2 and CO. The results using the mixture of reductants cannot be inferred from the results with the single reductants.  相似文献   

19.
A series of NiSO4/γ-Al2O3 catalysts were prepared by the impregnation method using an aqueous solution of nickel sulfate. The high catalytic activity of NiSO4/γ-Al2O3 for both 2-propanol dehydration and cumene dealkylation was related to the increase of acidity and acid strength due to the addition of NiSO4. 20(wt%)-NiSO4/g-Al2O3 calcined at 600 °C exhibited maximum catalytic activities for 2-propanol dehydration and cumene dealkylation. The catalytic activities for both reactions were correlated with the acidity of catalysts measured by the ammonia chemisorption method. This paper is dedicated to Professor Wha Young Lee on the occasion of his retirement from Seoul National University.  相似文献   

20.
In reforming of CH4 with CO2 over molybdenum carbide catalysts, the catalytic performance of unsupported hexagonal Mo2C prepared by direct carburization of MoO3 was considerably different from a similar composition, cubic MoC1−x (x≈0.5), prepared through nitriding before carburization. The conversion levels over MoC1−x were substantially higher than those over Mo2C, although the turnover frequencies were lower. X‐ray diffraction analysis indicated that Mo2C deactivated by conversion to MoO2 during the reaction, but the MoC1−x was transformed to the hexagonal Mo2C and remained stable. The activity of Mo2C dispersed on various supports for the CH4–CO2 reaction was also investigated. The performance depended strongly on the property of supports, with the ZrO2‐supported Mo2C catalyst exhibiting the highest activity and durability for this reaction. Moreover, deactivation of Mo2C/ZrO2 at ambient pressure was suppressed by decreasing the loading amount of Mo2C. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号