首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Problems arising during the design of stripline combline filters, which until quite recently were considered as all-stop microwave structures, are considered. It has been shown that the electromagnetic coupling coefficient of quarter-wave stripline resonators increases with the value of material permittivity εr, the operating frequency, and the thickness of the filter resonators. For εr = 92 and a thickness of stripline resonators of 4 mm, it exceeds 12% at frequencies higher than 2.2 GHz. Two alternative versions of combline filters have been designed: a filter with a coupling strip and a filter without a coupling strip. Experimental data for a nine-resonator combline filter with a thickness of 4 mm, εr = 9.7, and the center frequency f 0 = 2.4 GHz are presented. A method for increasing the selectivity of combline filters with the same number of resonators is proposed. It has been found that amplitude–frequency responses of stripline combline filters are near-symmetric, unlike the responses of microstrip combline filters.  相似文献   

2.
This article considers the design of thin stripline (1 mm) bandpass filters in the centimeter band, which contain dielectrics with different relative permittivity ε r . This includes the choice of the resonators, the dielectric material, the preliminary assessment of resonators’ unloaded quality factors and taking into account the features of the frequency response curve of the filter. It was found, that the passband width of the thin comb filters with λ/4 resonators and array-type filters with λ/2 resonators cannot exceed 6% for any values of ε r and the length of resonators of at least 2 mm. The array-type filters with resonators of half-wave type and with alternating signs of the coupling factors between resonators were proposed. Under certain additional conditions, the attenuation poles appear in such filters, resulting in improved selectivity. The results of computer modelling of the frequency response curve of thin filters of cm band are presented. They are compared to the frequency response of other filters. The data obtained from computer modelling showed good correspondence with the experimental data.  相似文献   

3.
Mixed coefficients of coupling between the closely spaced stepped-impedance resonators in comb filters of stripline design have been investigated. Transmission zeros at frequencies f zi correspond to mixed coupling coefficients k i . These zeros can be moved with respect to the filter passband central frequency f0 by modifying the shape of resonators. It was proved that the reduction of gap between resonators made it possible to locate frequencies f z and f0 closer to one another. The existing restrictions on the minimal value of gap between resonators limit the degree of proximity between f z and f0. The N-resonator stripline comb filters with mixed coupling can have N?1 transmission zeros. The absence of cross-coupling links in stripline filters simplifies their construction. It has been established that the thickness of central conductors of stripline resonators affects the positive and negative mixed coupling coefficients. The paper presents measurement data of miniature stripline three-resonator comb filter having an enhanced selectivity at the expense of two transmission zeros. The central frequency of filter is f0 = 1850 MHz, the bandwidth BW = 100 MHz. The filter having dimensions 5.8×4.2×2 mm was implemented by connecting two ceramic substrates having relative dielectric permittivity ε r = 92 and the metallized patterns deposited on them.  相似文献   

4.
The possibility to use thin (1 mm or less) pseudocombline structures of λ/2 resonators made of sections of symmetric transmission strip lines from a dielectric material with ε r = 2.2 as millimeter-wave bandpass filters is shown. It is established that the relative bandwidth of such filters can reach FBW = 0.1. Designs of stripline pseudocombline filters with alternating signs of the coupling coefficients, which are characterized by improved selectivity due to the attenuation poles located on both sides of the passband, are proposed; the filters contain stepped-impedance “half-wave” resonators with a new feature. The results of the computer simulation of the frequency characteristics of the filters in the frequency band of 31–122 GHz and the comparison of them with the characteristics of other filters are presented.  相似文献   

5.
This article shows the possibility in principle to design stripline comb filters with alternating signs of the coupling coefficients. The new feature of the stepped-impedance resonators of the quarterwave type was established. They provide the opposite sings of the electromagnetic coupling with adjacent resonators. Such resonators are asymmetric relative to the vertical axes, which is drawn through their middle part. The stripline passband filters with alternating signs of coupling coefficients have attenuation poles that are located to the left and to the right of the passband. Those poles improve the selectivity of such filters. The articles provide the measured characteristics of the stripline comb filter of the forth order with alternating coupling, which has the central frequency of f 0 = 1835 MHz and the passband width of 90 MHz. The filter is constructed using a dielectric material with relative permittivity of εr = 92 and has the dimensions of 7.4×4.2×2 mm.  相似文献   

6.
There are considered constructions of microsized stripe delay filters, which are realized on a basis of ceramic materials with high dielectric permittivity. Delay time of non-minimal phase filters is 7–12 ns at frequencies of 1900 MHz with relative bandwidth of 3.6–3.85%. Filters dimensions are comparable with ones used in portable communication devices. Dimensions of researched three-resonator filter at frequency of 1900 MHz are 8.4×5×2mmwith material dielectric permittivity εr = 92, and 5-resonator filter ones are 9.2×8.6×2 mm. Filters are different from traditional delay filters. Two filters of considered ones contain odd resonator number and the third one contains four resonators and it has two cross couplings. The basis of the filters is amount of step-impedance stripe resonators pairs located close to each others whose electromagnetic coupling behavior is capacitive. There are represented the results of frequency characteristics simulation for different delay filters.  相似文献   

7.
The compact duplexer using the symmetric stripline and containing the fifth-order comb filters in transmit channel TX (2300–2370 MHz) and receive channel RX (2510–2580 MHz) is constructed, and the characteristics of obtained duplexer are measured. This duplexer is built using dielectric material Al2O3 (Alumina, polikor) with high thermal conductivity that makes it possible to use the operating power of 10Wat small dimensions 57-11.8-4 mm. The losses in bandpass of TX and RX filters did not exceed 3 dB during the filter attenuation at adjacent channel frequencies of no less than 60 dB. It is shown that the selection of the width of metallized strip at the base of quarter-wave resonators makes it possible to change the duplexer width for attaining the required value. The circuit of coupling of resonators with loads used in this design made it possible to obtain a sufficiently high level of isolation from each other for RX and TX channels of duplexer. This level does not exceed 60 dB. The finite thickness of internal conductors of stripline amounting to 16 μm is taken into account while building the duplexer that results in good agreement between the simulation and measurement results.  相似文献   

8.
The optical-band subwavelength imaging by a multilayer Pendry lens consisting of alternating layers of a metal with the permittivity ε m < 0 and a dielectric with the permittivity ε d = ?ε m is considered. In the earlier papers by Pendry and Ramakrishna, it is shown that, in a nonideal case, i.e., for |ε d | = |ε m | ≠ 1, the image can be obtained only with the use of an asymmetric scheme, when the image is formed in a medium with a permittivity equal to ε d , the source being located in vacuum. However, in this case, the image quality is impaired (the image spectrum is narrowed). This phenomenon is explained in this study.  相似文献   

9.
A BiCu2PO6 microwave dielectric ceramic was prepared using a solid-state reaction method. As the sintering temperature increased from 800°C to 880°C, the bulk density of BiCu2PO6 ceramic increased from 6.299 g/cm3 to 6.366 g/cm3; the optimal temperature was 860°C. The best microwave dielectric properties [permittivity (? r ) = ~16, a quality factor (Q × f) = ~39,110 GHz and a temperature coefficient of resonant frequency (τ f ) = ~?59 ppm/°C] were obtained in the ceramic sintered at 860°C for 2 h. Then, TiO2 with a positive τ f (~+400 ppm/°C) was added to compensate the τ f value. The composite material was found to have a near-zero τ f (+2.7 ppm/°C) and desirable microwave properties (? r  = 19.9, Q × f = 24,885 GHz) when synthesized at a sintering temperature of 880°C. This system could potentially be used for low-temperature co-fired ceramics technology applications.  相似文献   

10.
A third-order microstrip filter is proposed and studied. It is characterized by a left-handed transmission zero fz, caused by the parasitic cross-coupling between non-adjacent resonators. The filter contains a half-wave middle resonator and two quarter-wave resonators located from different sides, near the open ends of the middle resonator. The coupling between all resonators has magnetic character, and the zero of the filter transfer function fz is located to the left of the center frequency of the passband f0. Such filter is described by a modified coupling matrix, where one of the main coupling coefficients is artificially assigned a minus sign. In the proposed filter design, for a given value of the main coupling coefficients, it is possible to provide different values of the cross-coupling coefficient by appropriately selecting the design parameters. This allows adjusting the zero position of the transmission fz for a given bandwidth of the filter, thereby changing the left slope of the amplitude-frequency characteristic. A sequence of steps is proposed for constructing such a filter. The measured and simulated frequency characteristics of the experimental filter are given.  相似文献   

11.
(1???x)K0.5Na0.5NbO3-x(Bi0.5K0.5)ZrO3 [abbreviated as (1???x)KNN-xBKZ, 0?≤?x?≤?0.08] lead-free ceramics have been fabricated by a solid-state processing route. Based on the x-ray diffraction data and temperature-dependent dielectric characteristics, an orthorhombic phase for x?≤?0.03 and single rhombohedral one for x?≥?0.05 at room temperature were determined. The cell volume firstly increases, then decreases and finally increases with increasing BKZ, depending on ionic size and crystallographic structure. For the sample of x?=?0.05, a temperature-stable high permittivity (~?1736?±?15%) along with low dielectric loss tangent (≤?5%) is recorded from 158°C to 407°C. In addition, the activation energies of dielectric relaxation and dc conductivity at high temperatures were characterized by impedance spectroscopy. A combined effect of lattice distortion and oxygen vacancies on the magnitude of activation energies was discussed.  相似文献   

12.
An active polyphase filter capable of high frequency quadrature signal generation has been analyzed. The resistors of the classical passive polyphase filter have been replaced by transconductors, CMOS inverters (F. Tillman and H. Sjöland, Proceedings of the Norchip Conference (pp. 12–15), Nov. 2005; Analog Integrated Circuits and Signal Processing, 50(1) 7–12, 2007). A three-stage 0.13 μm CMOS active polyphase filter has been designed. Simulations with a differential input signal show a quadrature error less than 1° for the full stable input voltage range for frequencies from 6 GHz to 14 GHz. Phase errors in the differential input signal are suppressed at least three times at the output. Corner simulations at 10 GHz show a maximum phase error of 3° with both n- and pMOS slow, in all other cases the error is less than 0.75°. The three-stage filter consumes 34 mA from a 1.2 V supply. To investigate the robustness of the filter to changes in inverter delay, an inverter model was implemented in Verilog-A. Linear c in and g in were used, whereas g m , c out , and g out were non-linear. It was found that the filter could tolerate substantial delays. Up to 40° phase shift resulted in less than 1.5° quadrature phase error at the output.  相似文献   

13.
A novel miniature ultra-wideband (UWB) bandpass filter with coplanar waveguide (CPW) fed is proposed. The size of the filter is reduced largely because of combining the wideband couple gap and parallel-coupled CPW line (not cascading multiple resonator), and the length of realized filter is only 0.42 λ g0 (λ g0 is the guiding wavelength at central frequency). The measured insertion loss is less than 2.0 dB, and the group delay variation is less than 0.2 ns within the UWB passband. Basic agreement between the simulated and measured results has been achieved.  相似文献   

14.
This paper considers a novel compact tri-band microstrip bandpass filter, the design of which employs asymmetric SIRs and DGS for achieving the characteristics of low insertion loss, high selectivity, wider range of bandwidth, and low group delay for 2.5/3.4 GHz (WiMAX) and 4.14–5.32 GHz (UWB) bands. The novel filter design implies the intentional selection of impedance ratio R and the length of the microstrip of asymmetric SIRs; in addition, DGS is used to improve the coupling strength of the last band. The scattering parameters of the three passbands have the following values: insertion losses S21 are–0.26/–0.07/–0.05 dB, and return losses S11 are–11.29/–19.25/–22.64 dB, respectively. The response of the filter was simulated using Ansoft HFSS simulator.  相似文献   

15.
Li2Mg2TiO5, a rock-salt structured ceramic fabricated by a solid-state sintering technique, was characterized at the microwave frequency band. As a result, a microwave dielectric permittivity (εr) of 13.4, a quality factor of 95,000 GHz (at 11.3 GHz), and a temperature coefficient of resonance frequency (τf) of ? 32.5 ppm/°C have been obtained at 1320°C. Li2Mg2TiO5 ceramics have low permittivity, a broad processing temperature region, and a low loss, making them potential applications in millimeter-wave devices. Furthermore, B2O3 addition efficiently lowered the sintering temperature of Li2Mg2TiO5 to 900°C, which opens up their possible applications in low-temperature co-fired ceramics (LTCC) technology.  相似文献   

16.
The problems of designing stripline and microstrip bandpass filters with mixed coupling, including the magnetic and electric components of the interaction, are considered. It is shown that the transmission zeros corresponding to mixed coupling coefficients can be shifted along the frequency axis by changing the shape of the stepped-impedance resonators. It is confirmed that N-resonator planar filters can have (N–1) transmission zeros. Designs of microstrip filters with combined coupling, which include mixed coupling and the traditionally used magnetic and electric coupling, are proposed. It is shown that the number of transmission zeros of such filters is smaller than for filters with only mixed coupling, but their designing and tuning are less labor-consuming. The data of the experiment and computer simulation are presented.  相似文献   

17.
A new compact design of CPW-fed wideband (WB) spiral-shaped slot antenna is proposed. The proposed antenna has a compact size with overall dimensions 37-33 mm and is fabricated on FR4 substrate with dielectric constant ? r = 4.4 and thickness h = 1.6 mm. With the different length of the spiral-shaped slots, simulated and experimental results of the antenna are suitable for WB operations. The–10 dB bandwidth of the WB antenna from measurement is approximately 115.2% (2.36–8.53 GHz). The proposed antenna provides nearly omni-directional radiation characteristics. The new antenna configuration operates in several different bands: 2.4, 3.5, 5.2, 5.5, and 5.8 GHz covering 2.4/5.2/5.8 GHz WLAN bands and 2.5/3.5/5.5 GHz WiMAX bands. The results for S11, far-field H- and E-plane radiation patterns and gain of the proposed antennas are presented and discussed. The agreement between measured results and full-wave simulation validates the feasible configuration of the proposed antennas.  相似文献   

18.
The permittivity spectra ε1(E) and ε2(E) of ZnSe and CdTe crystals are calculated in the range of 10–25 eV using their experimental reflectance spectra and Kramers–Kronig integral relations. The spectra are decomposed into thirteen and twelve separate transition bands for ZnSe and CdTe, respectively, using the improved nonparametric combined Argand diagram technique. The main spectral parameters, including the maximum energies and halfwidths and oscillator strengths, are determined. The oscillator strengths are found to be within 0.1–1.4 for ZnSe and 0.2–0.7 for CdTe. The obtained ε2(E) bands are due to interband and exciton transitions with the involvement of cation core d bands of both crystals under consideration.  相似文献   

19.
This article presents the design of non-subwavelength, non-resonant, and non-absorptive dielectric surface that creates a low-level backward diffuse reflections under illumination of a far-field plane wave at millimeter wave regime. Thus, radar cross section reduction of a solid metallic object can be achieved. The dielectric surface is consist of unit cells of only two different electric permittivity (ε r1?=?6.14 and ε r2?=?3.49) distributed across the surface aperture to achieve low-level backscattered diffuse reflections. The unit cells used are having non-subwavelength size (0.53λ80GHz) which ensures an easier fabrication of the presented surface using low cost simple PCB technology, in particular at high frequencies. RCS reduction of more than 10 dBsm is achieved from 70 to 87 GHz (BW?≈?21.65 %) using the presented dielectric surface of optimized permittivity distribution. The RCS reduction capabilities of the presented surface are studied theoretically under both normal and oblique incidences and then fabricated and verified experimentally by reflectivity measurements.  相似文献   

20.
In the present paper, the dielectric parameters such as the dielectric constant ε′(ω), dielectric loss ε″(ω) and alternating current (ac) conductivity have been investigated for bulk amorphous chalcogenide Se80?x Te20Pb x (x = 0, 1 and 2) glasses in the frequency range 10 Hz to 500 kHz and within the temperature range from 300 K to 320 K. Dielectric constant ε′(ω) and dielectric loss ε″(ω) are found to be highly frequency (ω) and temperature dependent, and this behavior is interpreted on the basis of Guintini’s theory of dielectric dispersion. The ac conductivity (σ ac) is found to be temperature independent and obey the power law ω s , where s < 1 and decreases as temperature rises. The obtained results are discussed in terms of the correlation barrier hopping model proposed by Elliot. The composition dependence of the dielectric constant, dielectric loss and ac conductivity are also discussed and reported here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号