首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The photoluminescence and Raman scattering of undoped γ-Ln2S3 single crystals (Ln is a rare earth ion) and the decay kinetics of the 4 F 3/2 level of Nd ions in these crystals have been investigated. The distortion of the decay curve of the Nd 4 F 3/2 level upon excitation by light with λ = 0.53 μm is explained.  相似文献   

2.
We investigate the synthesis of kesterite Cu2ZnSnS4 (CZTS) polycrystalline thin films using cosputtering from binary sulfide targets followed by annealing in sulfur vapor at 500°C to 650°C. The films are the kesterite CZTS phase as indicated by x-ray diffraction, Raman scattering, and optical absorption measurements. The films exhibit (112) fiber texture and preferred low-angle and Σ3 grain boundary populations which have been demonstrated to reduce recombination in Cu(In,Ga)Se2 and CdTe films. The grain growth kinetics are investigated as functions of temperature and the addition of Na. Significantly, lateral grain sizes above 1 μm are demonstrated for samples grown on Na-free glass, demonstrating the feasibility for CZTS growth on substrates other than soda lime glass.  相似文献   

3.
Our group has focused attention on Ga2Te3 as a natural nanostructured thermoelectric material. Ga2Te3 has basically a zincblende structure, but one-third of the Ga sites are structural vacancies due to the valence mismatch between Ga and Te. It has been confirmed that (1) vacancies in Ga2Te3 exist as two-dimensional (2D) vacancy planes, and (2) Ga2Te3 exhibits an unexpectedly low thermal conductivity (κ), most likely due to highly effective phonon scattering by the 2D vacancy planes. However, the effect of the size and periodicity of the 2D vacancy planes on κ has been unclear. In addition, it has also been unclear whether only the 2D vacancy planes reduce κ or if point-type vacancies can also reduce κ. In the present study, we tried to prepare Ga2Te3 and Ga2Se3 with various vacancy distributions by controlling annealing conditions. The atomic structures of the samples were characterized by means of transmission electron microscopy, and κ was evaluated from the thermal diffusivity measured by the laser flash method. The effects of vacancy distributions on κ of Ga2Te3 and Ga2Se3 are discussed.  相似文献   

4.
In anisotropic PbSb2Te4 and PbSb2Te4:Cu single crystals, nine main independent components of the Hall, electrical-conductivity, thermopower, and Nernst-Ettingshausen effects and their anisotropy in the range 77–450 K have been studied. PbSb2Te4 single crystals exhibit a high hole concentration (p ≈ 3 × 1020 cm−3). Copper exhibits a donor effect and significantly (approximately by a factor of 2) reduces the hole concentration in PbSb2Te4. The temperature dependences of the kinetic coefficients, except for the Hall effect, have a form typical of the one-band model. The significant anisotropy of the Hall coefficient R 123/R 321 ≈ 2 at low temperatures corresponds to the multi-ellipsoid model of the energy spectrum of holes in PbSb2Te4. An important feature of the data on transport phenomena is the high thermopower anisotropy (ΔS ≈ 60–75 μV/K) in the mixed conductivity region caused by the mixed scattering mechanism. Data on the anisotropy of the transverse Nernst-Ettingshausen effect confirm the mixed mechanism of hole scattering; in the cleavage plane, scattering at acoustic phonons dominates, while in the trigonal axis direction, impurity scattering appears significant. Doping with copper enhances the role of impurity scattering in the direction of the trigonal axis c 3; as a result, two components of the Nernst-Ettingshausen tensor Q 321 and Q 132 in the PbSb2Te4:Cu single crystal are positive at low temperatures, whereas, in the undoped crystal, only the Q 321 component is positive.  相似文献   

5.
Si0.6Ge0.4 nanocrystals, of diameter <5 nm, embedded in SiO2 in the form of single layers (2.1 × 1012 nanoparticles cm–2) and five-period multilayers (above 1013 nanoparticles cm–2) have been fabricated using a low-thermal-budget process consisting of deposition by low-pressure chemical vapor deposition and crystallization by rapid thermal annealing at several temperatures and for different times. The crystallization process was monitored by Raman spectroscopy and transmission electron microscopy. The loss of integrity and compositional changes of the nanoparticles during the annealing process were characterized by Rutherford backscattering spectrometry. During the annealing process, crystallization and Ge out-diffusion have been observed to compete with each other. Annealing of samples with nanoparticles of 4.6 nm diameter at low temperature (750°C) yields poor crystallization of the nanoparticles and causes the Ge to leave them by a pure diffusive mechanism, thus destroying their integrity. At higher temperatures (≥800°C), crystallization takes place in a short period of time (<30 s) and diffusion from the crystallized material is initially hindered. For samples with nanoparticles of 3.3 nm diameter, partial crystallization is detected at 800°C and 900°C and the crystalline quality is improved in both cases as the annealing time increases. Also, the detection capabilities of the Raman spectroscopy system for the detection of a certain density of SiGe nanocrystals of given diameter and composition have been explored and the lower limit estimated.  相似文献   

6.
Data on the Raman spectra of thin Ge2Sb2Te5 chalcogenide semiconductor films are reported. The study is performed with the purpose of determining the temperatures of phase transitions initiated by laser radiation.  相似文献   

7.
In (Bi1.9Sb0.1)1 − x Sn x Te3 solid solution with different contents of Sn, the electrical conductivity (σ11) and the Hall (R 123 and R 321), Seebeck (S 11 and S 33), and Nernst-Ettingshausen (Q 123 and Q 321) coefficients have been measured. It is shown that doping with tin strongly modifies temperature dependences of the kinetic coefficients. The effect of tin on electrical homogeneity of the samples has been studied: with increasing number of Sn atoms embedded, crystals become more homogeneous. These features indicate the presence of the quasi-local states of Sn in the valence band of Bi1.9Sb0.1Te3. Within a one-band model, we estimated the effective mass of the density of hole states (m d ), the energy gap extrapolated to 0 K (E g0 = 0.20–0.25 eV), the energy of impurity states (E Sn ≈ 40–45 meV), and the scattering parameter (r ≈ 0.1–0.4). Numerical values of the scattering parameter indicate a mixed mechanism of scattering in the samples under investigation with dominant scattering at acoustic phonons. With increasing content of tin in the samples, the contribution of impurity scattering increases.  相似文献   

8.
On one Sb2Te3 single crystal, the temperature dependences of all three independent components of the Nernst-Ettingshausen tensor (Q ikl ) are measured in the temperature range of 85–450 K, all three components being negative. Alongside with the Nernst-Ettingshausen effect, the anisotropy of the Hall (R ikl ) and Seebeck (S ij ) coefficients and the conductivity (σ ii ) is also investigated. The carried-out analysis of the experimental data on the Nernst-Ettingshausen and Seebeck effects indicates that there is the mixed scattering mechanism with the participation of acoustic phonons and impurity ions, the relative contributions of these mechanisms varying with temperature. In the relaxation-time-tensor approximation, the values of the effective scattering parameter (r) are determined. The obtained values point to the dominant scattering at acoustic phonons in the cleavage plane and to the substantial contribution of charged ions to the scattering along the trigonal axis c 3. It is shown that it is possible to explain the major features of experimental data on the Nernst-Ettingshausen effect within the two-valence-band model with the participation of several groups of holes in the transport phenomena.  相似文献   

9.
Li2Mg2TiO5, a rock-salt structured ceramic fabricated by a solid-state sintering technique, was characterized at the microwave frequency band. As a result, a microwave dielectric permittivity (εr) of 13.4, a quality factor of 95,000 GHz (at 11.3 GHz), and a temperature coefficient of resonance frequency (τf) of ? 32.5 ppm/°C have been obtained at 1320°C. Li2Mg2TiO5 ceramics have low permittivity, a broad processing temperature region, and a low loss, making them potential applications in millimeter-wave devices. Furthermore, B2O3 addition efficiently lowered the sintering temperature of Li2Mg2TiO5 to 900°C, which opens up their possible applications in low-temperature co-fired ceramics (LTCC) technology.  相似文献   

10.
The thermal stability of a Ge2Sb2Te5 chalcogenide layer in contact with titanium and titanium nitride metallic thin films has been investigated mainly using x-ray diffraction and elastic nuclear backscattering techniques. Without breaking vacuum, Ti and TiN have been deposited on Ge2Sb2Te5 material using magnetron sputtering. Thermal treatments have been performed in a 10−7 mbar vacuum furnace. On annealing up to 450°C, the TiN metallic film does not interact with the chalcogenide film, but at the same time adhesion problems and instabilities in contact resistance arise. To improve the adhesion and eventually stabilize the contact resistance, an interfacial Ti layer has been considered. At 300°C, a TiTe2 compound is formed by interacting with Te segregated from the Ge2Sb2Te5 layer. At higher temperatures, the Ti layer decomposes the chalcogenide film, forming several compounds tentatively identified as GeTe, Ge3Ti5, Ge5Ti6, TiTe2,, and Sb2Te3. It has been found that the properties of the Ge2Sb2Te5 film can be retained by controlling the decomposition rate of the chalcogenide layer, which is achieved by providing a limited supply of Ti and/or by depositing a Te-rich Ge2Sb2Te5 film.  相似文献   

11.
Using the method of linear response, vibrational spectra and densities of states of GaP and AlP crystals and monolayer GaP/AlP superlattices are calculated. Phonon modes of (GaP) n (AlP) m superlattices with various numbers of monolayers are calculated for the center of the Brillouin zone. The obtained results are compared with the Raman scattering data and the effect of nonideality of the interface on phonon frequencies is discussed.  相似文献   

12.
Glass with compositions xK2O-(30 ? x)Li2O-10WO3-60B2O3 for 0 ≤ x ≤ 30 mol.% have been prepared using the normal melt quenching technique. The optical reflection and absorption spectra were recorded at room temperature in the wavelength range 300–800 nm. From the absorption edge studies, the values of the optical band gap (E opt) and Urbach energy (ΔE) have been evaluated. The values of E opt and ΔE vary non-linearly with composition parameter, showing the mixed alkali effect. The dispersion of the refractive index is discussed in terms of the single oscillator Wemple Di-Domenico model.  相似文献   

13.
Bulk thermoelectric nanocomposite materials have great potential to exhibit higher ZT due to effects arising from their nanostructure. Herein, we report low-temperature thermoelectric properties of Co0.9Fe0.1Sb3-based skutterudite nanocomposites containing FeSb2 nanoinclusions. These nanocomposites can be easily synthesized by melting and rapid water quenching. The nanoscale FeSb2 precipitates are well dispersed in the skutterudite matrix and reduce the lattice thermal conductivity due to additional phonon scattering from nanoscopic interfaces. Moreover, the nanocomposite samples also exhibit enhanced Seebeck coefficients relative to regular iron-substituted skutterudite samples. As a result, our best nanocomposite sample boasts a ZT = 0.041 at 300 K, which is nearly three times as large as that for Co0.9Fe0.1Sb3 previously reported.  相似文献   

14.
The influence of BaCu(B2O5) (BCB) addition on the sintering temperature and microwave dielectric properties of ZnO-2TiO2-Nb2O5 (ZTN) ceramic has been investigated using dilatometry, x-ray diffraction, scanning electron microscopy, and microwave dielectric measurements. A small amount of BCB addition to ZTN can lower the sintering temperature from 1100°C to 900°C. The reduced sintering temperature was attributed to the formation of the BCB liquid phase. The ZTN ceramics containing 3.0 wt.% BCB sintered at 900°C for 2 h have good microwave dielectric properties of Q × f = 19,002 GHz (at 6.48 GHz), ε r = 45.8 and τ f  = 23.2 ppm/°C, which suggests that the ceramics can be applied in multilayer microwave devices, provided that Ag compatibility exists.  相似文献   

15.
The magnetic susceptibility of Czochralski-grown single crystals of Bi2Te3-Sb2Te3 alloys containing 0, 10, 25, 40, 50, 60, 65, 70, 80, 90, 99.5, or 100 mol % Sb2Te3 has been investigated. The magnetic susceptibility of these crystals was determined at the temperature T = 291 K and the magnetic field H oriented parallel (χ) and perpendicularly (χ) to the trigonal crystallographic axis C 3. A complicated concentration dependence of the anisotropy of magnetic susceptibility χ has been revealed. The crystals with the free carrier concentration p ≈ 5 × 1019 cm?3 do not exhibit anisotropy of magnetic susceptibility. The transition to the isotropic magnetic state occurs for the compositions characterized by a significantly increased (from 200 to 300 meV) optical bandgap.  相似文献   

16.
Electrical and thermoelectric properties of a lightly doped n-Bi2Te2.7Se0.3 solid solution have been studied in the temperature range 77–300 K. The results are compared with data for the compound PbTe0.9Se0.1 with a similar magnitude of the Seebeck coefficient S at 84 K. Along with lower thermal conductivity, Bi2Te2.7Se0.3 has a higher electrical conductivity σ and a much weaker temperature dependence. As a result, the power coefficient S 2σ in optimal samples begins to decrease only when the density of minority carriers becomes significant. In this case, |S| considerably exceeds the standard value of 200 μV/K. The reduction of the electron density reduces the thermoelectric figure of merit Z at its maximum and slightly lowers the temperature of the maximum; therefore, the expected effect on the average value of Z in the range 77–300 K is absent. Similar behavior is observed in Bi2Te2.88Se0.12, although the effect is less pronounced. The experimental results are discussed taking into account possible changes in the dominant scattering mechanisms, carrier density, and electron energy spectrum. __________ Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 38, No. 7, 2004, pp. 811–815. Original Russian Text Copyright ? 2004 by Konstantinov, Prokof’eva, Ravich, Fedorov, Kompaniets.  相似文献   

17.
18.
In the context of density functional theory, the phonon density of states and phonon dispersion are calculated for ZnGa2Se4. The temperature dependence of the heat capacity of ZnGa2Se4 in the temperature range 5–400 K is obtained. The calculated frequencies and symmetries of phonon modes in the center of the Brillouin zone are in good agreement with experimental data obtained by Raman spectroscopy and infrared spectroscopy.  相似文献   

19.
In this work, Bi2Te3-Sb2Te3 superlattices were prepared by the nanoalloying approach. Very thin layers of Bi, Sb, and Te were deposited on cold substrates, rebuilding the crystal structure of V2VI3 compounds. Nanoalloyed super- lattices consisting of alternating Bi2Te3 and Sb2Te3 layers were grown with a thickness of 9 nm for the individual layers. The as-grown layers were annealed under different conditions to optimize the thermoelectric parameters. The obtained layers were investigated in their as-grown and annealed states using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray (EDX) spectroscopy, transmission electron microscopy (TEM), and electrical measurements. A lower limit of the elemental layer thickness was found to have c-orientation. Pure nanoalloyed Sb2Te3 layers were p-type as expected; however, it was impossible to synthesize p-type Bi2Te3 layers. Hence the Bi2Te3-Sb2Te3 superlattices consisting of alternating n- and p-type layers showed poor thermoelectric properties.  相似文献   

20.
Germanium dioxide films containing Ge nanocrystals are studied. The films have been prepared by two methods: (i) deposition from supersaturated GeO vapors with subsequent decomposition of metastable germanium monoxide into a heterophase Ge:GeO2 system, and (ii) formation of anomalously thick native germanium oxides with a GeO2(H2O) chemical composition by a catalyst-accelerated oxidation of germanium. The films, which have been prepared on various substrates, are studied using the photoluminescence technique, Raman spectroscopy, spectral ellipsometry, and high-resolution electron microscopy. In the GeO2 films with built-in Ge nanoclusters, intense photoluminescence is detected at room temperature. The nanocluster sizes are estimated from the position of the Raman peak related to localized optical phonons. The correlation between a decrease in the nanocluster size and the shift of the photoluminescence peaks to the blue spectral region as the relative Ge content decreases is revealed. The presence of nanoclusters is confirmed by the data obtained from high-resolution electron microscopy. The correlation of the optical gap calculated taking into account the quantum confinement of electrons and holes in the nanoclusters with the experimentally observed luminescence peak is established. It can be concluded from the data obtained that the Ge nanoclusters constructed in the GeO2 matrix represent type I quantum dots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号