首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
AZ31镁合金超塑性及其变形机制图   总被引:1,自引:0,他引:1  
在温度为400~440 ℃、应变速率为10-2~10-4 s-1范围内,研究挤压态AZ31镁合金的超塑性.结果表明,当应变速率较高时,颈缩是超塑性断裂的主要原因.温度越高,应变速率敏感指数m值越大, AZ31镁合金的超塑性伸长率越高.当应变速率较低时,空洞扩张是影响超塑性断裂的主要原因,温度越高,超塑性伸长率越低.研究了超塑性变形机理,建立了超塑性变形机制图,结果表明,温度为400 ℃或420 ℃、应变速率较低时,AZ31镁合金的超塑性变形属于溶质拖曳的位错蠕变机制;当应变速率较大时,属于攀移控制的位错蠕变机制.温度为440 ℃时,AZ31镁合金的变形机制符合晶格扩散控制的位错蠕变.  相似文献   

2.
工业态AZ31镁合金的超塑性变形行为   总被引:33,自引:2,他引:33  
研究了工业态AZ31镁合金在温度 6 2 3~ 72 3K和应变速率 1× 10 -5~ 1× 10 -3 s-1范围内的超塑性变形行为。结果表明 ,工业态AZ31镁合金表现出良好的超塑性 ,其最高断裂延伸率达到 314%,应变速率敏感指数达 0 .4。显微组织观察和断口分析表明 ,工业态AZ31镁合金超塑变形主要由晶界滑动机制所控制 ,同时 ,动态再结晶也是合金超塑变形的一种协同机制。  相似文献   

3.
研究不具有典型细晶组织的挤压态Mg-7.0Al-0.2Zn(AZ70)合金的超塑性及其变形机制。结果表明:AZ70镁合金具有良好的超塑性变形行为。在380℃及1×10-3s-1的最佳变形条件下,最大伸长率为191.5%。380℃时具有良好的高应变速率(1×10-2s-1)超塑性变形能力,伸长率为161.5%。晶粒尺寸随温度的升高与应变速率的降低而增大。超塑性变形是以晶界滑移为主,表现为变形过程中晶粒组织基本保持等轴,且孔洞沿晶界形成并长大。同时孔洞的长大及连接导致最终断裂,断口形貌显示为典型的韧窝断裂特征。  相似文献   

4.
挤压高强度AZ91D镁合金管材的研究   总被引:1,自引:0,他引:1  
针对挤压变形得到的高强度AZ91D合金管材进行了组织分析,探讨了其强化机制。实验得出,在温度为430℃、应变速率为0.033s-1、挤压比为12时AZ91D镁合金挤压管材(T6)的抗拉强度可达417.2MPa,远远高于压铸镁合金及AZ31等常用变形镁合金;除细晶强化外,第二相强化、亚晶界析出强化和堆垛结构强化为其主要强化机制。  相似文献   

5.
挤压态AZ31B镁合金的超塑性研究   总被引:1,自引:0,他引:1  
郭超  杨永顺  周新平 《铸造技术》2007,28(2):242-244
将铸态镁合金AZ31B在300℃以1∶6的挤压比进行挤压,在310-460℃温度范围内,以1×10^-1-1×10^-4s^-1初始应变速率,对挤压后试样作单向拉伸试验,研究AZ31B镁合金的超塑性流变行为。扫描电镜对拉伸后的试样断口进行分析。试验表明,经过热挤压可以改善镁合金的拉伸力学性能,在415℃、应变速率为1×10^-4s^-4时挤压态镁合金具有良好的超塑性,伸长率达到了380%;断口分析表明,AZ31B的超塑变形的主要机制为晶界滑移。  相似文献   

6.
AZ31B镁合金薄板超塑性气胀成形   总被引:3,自引:0,他引:3  
利用热拉伸试验、气胀成形、金相显微镜和扫描电镜,研究AZ31B镁合金薄板热拉伸性能、气胀成形性能及其组织结构.结果表明:在变形温度为425℃,应变速率为1.0×10-3~6.6×10-5s-1时,其流动应力4~12MPa,延伸率则为200%~327%,挤压+热轧,冷轧的镁合金薄板表现出良好的超塑性;在变形温度为425℃,应变速率为1.0×10-3s-1条件下AZ31B镁合金板材的超塑气胀成形性能较好,胀形件的高度可达24 mm以上,其高径比大于0.80.  相似文献   

7.
AZ91D镁合金高温压缩变形行为   总被引:6,自引:6,他引:0  
针对AZ91D镁合金,采用Gleeble1500D热模拟实验机对原始铸态试样在不同温度和应变速率下的高温压缩变形行为进行了实验研究.结果表明,AZ91D镁合金在压缩温度为200℃时,随着应变速率增大,应力升高加快;压缩温度为300~400 ℃、应变速率为0.001~1 s-1时,材料呈现出稳态流变的特性;当应变速率提高到5 s-1时,未出现稳态流变现象.建立了AZ91D镁合金低、高温压缩的变形力学模型,其结果可为镁合金的塑性成形工艺的制订提供理论依据.  相似文献   

8.
往复挤压及正挤压AZ91D镁合金丝材的组织及性能   总被引:2,自引:0,他引:2  
将AZ91D镁合金铸锭在330℃往复挤压4道次后,在300℃连续正挤压制成Ф5mm的丝材,用OM,SEM分析不同方式挤压前后组织的变化,研究往复挤压及随后正挤压对其组织与性能的影响。研究表明,AZ91D镁合金往复挤压4道次及连续正挤压制备的矽5mm丝材组织均为等轴晶,晶粒尺寸分别为小于10um及1um~3um。经往复挤压及随后的正挤压,AZ91D铸造镁合金的综合力学性能均可得到显著提高,其主要原因是基体组织α-Mg和强化相β-Mg17Al12的细化。往复挤压4道次后,材料真应变高达20.36,正挤压过程中等效应变速率达到0.192s^-1,AZ91D镁合金往复挤压及正挤压晶粒的细化机制主要包括破碎、动态再结晶和动态回复。  相似文献   

9.
在 Gleeble-1500D热模拟机上进行热压缩试验,研究了变形温度为320~440℃、应变速率为0.001~1.000 s-1、最大变形程度为60%的条件下挤压态AZ81镁合金的高温热变形行为.热变形过程中的稳态流变应力可用双曲正弦本构关系式来描述,平均激活能为182.17 kJ/mol,大于其自扩散激活能.根据材料动态模型,计算并分析了挤压态AZ81合金的热加工图,结合显微组织观察结果,分析了挤压态AZ81镁合金的热加工性能.在变形温度为320~440℃、应变速率为0.001~1.000 s-1、最大变形程度为60%的条件下,失稳判据ξ(ε)>0,说明AZ81镁合金在该条件下塑性变形性能良好.并根据加工图获得了在试验参数范围内的热变形过程的最佳工艺参数范围,其热加工温度选在380~400℃、应变速率为0.010~0.100 s-1时较好.  相似文献   

10.
肖代红  陈康华  宋旼 《轻金属》2007,(11):50-54
研究了Al-5.3Cu-0.8Mg-0.6Ag合金板在温度400℃~520℃以及应变速率1×10-4s-1~1×10-1s-1下的超塑性变形能力及其变形机制。结果显示,轧制态的Al-5.3Cu-0.8Mg-0.6Ag合金在500℃及应变速率5×10-4s-1时的最大延伸率为320%,应变速率敏感系数达到0.58。高应变速率下超塑性变形过程中主要机制为晶界滑动,协调机制则是空洞的形核长大与断裂。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号