首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heavy metal pollution from industrial wastewater is a worldwide environmental issue. Biosorption of heavy metals by using biosorbents derived from various types of biomass has been shown to be effective for the uptake of heavy metal ions. In this study, biosorbents derived from the biomass of a group of marine macroalgae were used for the removal and recovery of heavy metal ions from aqueous solutions. Results indicated that the biosorbents have high uptake capacities and affinities for a number of heavy metal ions. The uptake capacities of the biosorbents were in the range of 1.0 to 1.5mmol·g-1 for divalent heavy metal ions. The kinetics of the uptake process was fast and the process can be used in both batch and fixed-bed operations. It appears that the biosorption process by using biosorbents from marine macroalgae can be an efficient and cost effective technology for the treatment of heavy metal containing wastewater.  相似文献   

2.
《分离科学与技术》2012,47(16):3641-3656
Abstract

An attempt was made to assess the biosorption potential of rose waste biomass for the removal of Pb(II) and Co(II) ions from synthetic effluents. Biosorption of heavy metal ions (>90%) reached equilibrium in 30 min. Maximum removal of Pb(II) and Co(II) occurred at pH 5 and 6 respectively. The biosorbent dose for efficient uptake of Pb(II) and Co(II) was 0.5 g/L for both metals. The biosorbent size affected the Pb(II) and Co(II) biosorption rate and capacity. Rose waste biomass was found effective for Pb(II) and Co(II) removal from synthetic effluents in the concentration range 10–640 mg/L. Equilibrium sorption studies showed that the extent of Pb(II) and Co(II) uptake by the rose waste biomass was better described by the Langmuir isotherm in comparison to the Freundlich model. The uptake capacities of the two metal ions were 156 and 27.15 mg/g for Pb(II) and Co(II) respectively.  相似文献   

3.
The synthesis of biodegradable environmentally friendly copolymeric beads for water treatment biosorption processes is demonstrated. The synthesized poly(methacrylamide) grafted aliginic acid copolymers were characterized using 1H NMR, Fourier transform infrared spectroscopy, TGA and SEM. The di‐block copolymers showed a morphological change from two‐dimensional layer‐by‐layer structures to three‐dimensional well‐compacted wrinkles as grafting efficiency increased. The copolymeric beads were formed from the di‐block copolymer and algae crosslinked with 5% calcium ions (w/w). These copolymeric beads were then subjected to biosorption investigations for zinc ions as a model heavy metal ion at different pH values and stirring time periods. Batch adsorption experiments showed that the copolymeric beads were effective in zinc ion removal from aqueous solutions with maximum uptake exceeding 89.0 mg g–1 using higher grafting efficiency copolymeric beads at pH 5.5. Equilibrium pH studies revealed that zinc biosorption was pH dependent and maximum uptake was obtained at pH 5.5. Dynamics studies showed that the biosorption of zinc was rapid with equilibrium attained within 40 min and the data followed pseudo‐second‐order kinetics. The equilibrium biosorption of zinc ions on the copolymeric beads exhibited a Freundlich isotherm fit. © 2012 Society of Chemical Industry  相似文献   

4.
重金属生物吸附的吸附模型   总被引:1,自引:0,他引:1       下载免费PDF全文
郑成  虞启明  尹平和 《化工学报》2007,58(1):145-148
排污系统中的重金属通过生物的方法进行吸附除掉,是一种重金属回收和再利用的较为有效治理方法。本研究通过热平衡的机理分析,采用普通的物质吸附模型,通过大量的实验数据处理,得到了重金属吸附脱俯的数学模型。该模型具有较好计算与实验数据的吻合性。但是实验结果也表明,生物吸附模型不适用于计算在生物质中的重金属离子脱附量,即重金属生物吸附模型没有满足可逆性。这一点在使用该模型时需要给予考虑。因此吸附的机理分析还需要结合实践过程的热力学平衡数据来进行分析回归。  相似文献   

5.
The biosorption characteristics of copper(II) ions using Posidonia oceanica biomass were investigated. Experimental parameters affecting the biosorption process such as pH level, contact time, biosorbent dosage and temperature were studied. The equilibrium data were applied to the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. The Langmuir model fitted very well the equilibrium data, and the maximum uptake of Cu(II) by Posidonia oceanica was found to be 76.92 mg/g. The mean free energy E (10.78 kJ/mol) from the D-R isotherm indicated a chemical ion-exchange mechanism. Kinetic results showed that the pseudo-second-order kinetic model was well fitted to the experimental data. Thermodynamic parameters depicted the exothermic nature of biosorption and the process was feasible and spontaneous. The results of FTIR (Fourier-transform infrared spectroscopy) revealed that carboxyl, amine, and hydroxyl groups on the biomass surface were involved in the biosorption of Cu(II) ions.  相似文献   

6.
The biosorption potential of many different kinds of biomaterials has been widely studied. However, there is little data on the biosorption mechanism of Cr(VI) by dried biomass. So the bio-removal of Cr(VI) ions from aqueous solutions was investigated using dried biomass from a chromium-resistant bacterium. The bacterium was isolated from dewatered sludge samples that were obtained from a sewage treatment plant. Equilibrium and kinetic experiments were performed at different metal concentrations, pH values, and biosorbents dosages. The biomass was characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The functional groups in the Bacillus cereus biomass which may play a role in the biosorption process were identified by Fourier transform infrared spectroscopy. The biosorption process was found to be highly pH dependent and the optimum pH for the adsorption of Cr(VI) was 2.0±0.3 at 30±2 °C. The experimental data fit well with Langmuir and Freundlich models as well as a pseudo-second order kinetic model. The mechanism for the biosorption was also studied by fitting the kinetic data with an intra-particle diffusion model and a Boyd plot. External mass transfer was found to be the rate-determining step for the adsorption process. Biosorption could be an alternative mechanism besides bio-oxidation and bio-reduction for the bioremediation of heavy metals.  相似文献   

7.
The present investigation explored the use of Citrus reticulata waste biomass (CWB) for the removal of Pb(II) and Co(II) from the aqueous solutions. The Pb(II) and Co(II) biosorption was found to be dependent on pH of the solution, biosorbent dose, biosorbent particle size, temperature, shaking speed, contact time and initial concentration of metal ions. A metal uptake capacity of 41.16 and 52.64 mg/g was observed at pH 5 and 7 for Pb(II) and Co(II), respectively. The biosorption data followed the Freundlich model for both metals. The overall biosorption process was best described by pseudo-second order kinetics. The effect of several pretreatments on the biosorption efficiency of CWB was also investigated. The results demonstrated that pretreatments influenced the biosorption capacity of the biomass for the both metals significantly. Maximum biosorption capacity of 83.77 and 95.55 mg/g was observed for Pb(II) and Co(II) with sodium hydroxide treated and simply heated biomass, respectively. FTIR spectrum indicated the presence of -OH, -NH, -COOH groups in the biomass. The surface structure of CWB was analyzed by JEOL JMT 300 scanning electron microscope (SEM), and the existence of metal ions on the surface of biosorbent was determined by energy dispersive X-ray (EDX) spectroscopy.  相似文献   

8.
Although the biosorption of single metal ions to various microorganisms has been extensively studied and adsorption isotherms have been developed for single metal ion situations, very little attention has been given to the bioremoval and the expression of the adsorption isotherms of multi-metal ions systems. In this study, the competitive biosorption of iron(III) and chromium(VI) to Chlorella vulgaris from a binary metal mixture was studied and compared with the single metal ion situation in a batch stirred system. The effects of pH and single and dual metal ion concentrations on the biosorption rates and equilibrium uptakes were investigated. The optimum biosorption pH for both metal ions was determined as 2·0. Multi-metal ion biosorption studies were also performed at this pH value. It was observed that the biosorption rates and yields and equilibrium uptakes of iron(III) or chromium(VI) ions were reduced by the presence of increasing concentrations of the other metal ion. Adsorption isotherms developed for both single and dual metal ion systems at the optimum pH were expressed by the non-competitive and competitive Langmuir and Freundlich adsorption models, and model parameters were determined by computer. It was seen that the adsorption equilibrium data fitted very well to both of the models in the concentration ranges studied. ©1997 SCI  相似文献   

9.
《分离科学与技术》2012,47(17):2688-2699
Raw and modified biomasses prepared from Padina sp. algae have been used as sorbent for the removal of lead and cadmium from single and binary aqueous solutions. The effects of chemical pretreatment, exposure time, initial solution pH, initial metal concentration, and temperature on the metal uptake by the algae were investigated. It was observed that initial solution pH considerably influenced Pb and Cd uptake. The maximum removal occurred at initial pH of 5.0 for lead and 6.0 for cadmium. Also, alkali modified biomass has been shown to have a high uptake capacity for both lead and cadmium. The kinetic and equilibrium experimental data fitting tested with various models. The pseudo-first-order kinetic model and Langmuir isotherm provided the best correlation of the kinetic and equilibrium experimental data, respectively. The maximum uptake estimated from the Langmuir isotherm was 264 mg g?1 for lead and 164 mg g?1 for cadmium ions. Experimental biosorption data in binary system were well described by the extended Langmuir model. Various thermodynamic parameters, such as ΔG°, ΔH°, and ΔS° were calculated.  相似文献   

10.
11.
Native stipe (NS) and microwave treated stipe (MTS) of Flammulina velutipes were utilized for the biosorption of Zn2+ and Pb2+ ions from aqueous solution. The effects of pH, contact time, and initial concentration on the biosorption were studied for each metal separately. The desired pH of aqueous solution was found to be 6.0 for the removal of Zn2+ ions and 5.0 for the removal of Pb2+ ions. The percent removal of both metals was found to increase with the increase in contact time; biosorption equilibrium was established in about 60 min. The maximum biosorption of Zn2+ and Pb2+ ions from single component systems can be successfully described by Langmuir and Freundlich models; the biosorption kinetics can be accurately described by a second-order kinetic model. The present data from these studies confirms that the native and microwave treated forms of Flammulina velutipes stipe have the potential to be used for the biosorption of Zn2+ and Pb2+ ions from aqueous solution. The metal biosorption capacities of NS for Zn2+ and Pb2+ were 58.14 and 151.51 mg g?1, respectively, while the biosorption capacities of MTS for the both metals were 95.24 and 172.41 mg g?1, respectively.  相似文献   

12.
BACKGROUND: This research provides new insights into the biosorption of zinc on a waste product from the orange juice industry. Optimal operating conditions maximizing percentage zinc removal were determined in batch and fixed‐bed systems. Biomass was characterized by FTIR spectroscopy and by major cation content in order to better understand the biosorpion mechanism. Zn‐loaded orange waste was proposed to be used as an alternative fuel in cement kilns. RESULTS: Sorption capacity was strongly affected by biosorbent dose and solution pH, and was not strongly sensitive to particle size under the experimental conditions studied. Equilibrium data were successfully described by a Langmuir model and sorption kinetic data were adequately modelled with the pseudo‐second‐order and Elovich rate equation. The biomass was found to possess high sorption capacity (qmax = 0.664 mmol g?1) and biosorption equilibrium was established in less than 3 h. Experimental breakthrough curves were adequately fitted to the Thomas model and the dose–response model, obtaining sorption capacities in continuous assays higher than those found in batch mode. Characterization of the biomass suggested the possible contribution of carboxyl and hydroxyl groups of biomass in Zn2+ biosorption and it also highlighted the important role of light metal ions in a possible ion‐exchange mechanism. CONCLUSIONS: Orange waste could be used as an effective and low‐cost alternative biosorbent material for zinc removal from aqueous solution. Copyright © 2010 Society of Chemical Industry  相似文献   

13.
14.
Instantaneous and equilibrium metal uptake performance of Rhizopus arrhizus was studied using aqueous solutions containing Cr(VI), Cu(II), and Cd(II) ions in ternary mixtures. Application of the multicomponent Langmuir model to describe the three-metal system revealed its nonideal characteristics, whereby the values of the equilibrium constants and the maximum capacities for the metals differed for each system. For that reason, the ternary biosorption equilibria of Cr(VI), Cu(II), and Cd(II) ions with R. arrhizus were further investigated by using the multicomponent Freundlich model. From the equations of the multicomponent Freundlich model, three-dimensional (3-D) biosorption isotherm surfaces were simulated depicting the equilibrium behavior of the three-metal system.  相似文献   

15.
Instantaneous and equilibrium metal uptake performance of Rhizopus arrhizus was studied using aqueous solutions containing Cr(VI), Cu(II), and Cd(II) ions in ternary mixtures. Application of the multicomponent Langmuir model to describe the three-metal system revealed its nonideal characteristics, whereby the values of the equilibrium constants and the maximum capacities for the metals differed for each system. For that reason, the ternary biosorption equilibria of Cr(VI), Cu(II), and Cd(II) ions with R. arrhizus were further investigated by using the multicomponent Freundlich model. From the equations of the multicomponent Freundlich model, three-dimensional (3-D) biosorption isotherm surfaces were simulated depicting the equilibrium behavior of the three-metal system.  相似文献   

16.
啤酒酵母吸附去除水中Cd~(2+)的影响因素   总被引:2,自引:0,他引:2  
生物吸附法是一种经济有效的处理大规模低浓度重金属废水的生物技术,其中啤酒酵母(Saccharomyces cerevisiae)是具有实用潜力的生物吸附剂。本文研究了啤酒酵母对Cd2+吸附效果的主要影响因素,结果表明pH值对Cd2+会产生较大的影响,非固定化和固定化啤酒酵母对Cd2+吸附的最佳pH值都为4,过高和过低均不利于吸附的进行。水中常见的K+、Ca2+、Na+、Mg2+四种离子在低浓度时对Cd2+的吸附无显著影响,但当其浓度高于5mg/L时会影响吸附,其影响顺序为K+Na+Ca2+Mg2+;Zn2+、Fe2+、Cu2+、Pb2+对Cd2+的吸附效果影响顺序为Pb2+Zn2+Fe2+Cu2+;当Cu2+浓度≥50mg/L时,啤酒酵母对Cd2+不产生性吸附,而对Cu2+产生专性吸附。  相似文献   

17.
Heavy metal and Al sorption capacities of Ca-loadedSargassum fluitans biomass were studied by using equilibrium methodology. An evaluation of sorption performance and modeling in a two-metal system was carried out with a modified multi-component Langmuir isotherm. The maximum uptakes of Cr, Pb, Cu, Cd, Zn and Al calculated from the Langmuir isotherm were 1.74 mmol/g, 1.65 mmol/g, 1.61 mmol/g, 1.15 mmol/g, 0.81 mmol/g, and 2.95 mmol/g at pH 4.5, respectively. The interference of Al in heavy metal biosorptive uptakes was assessed by ‘cutting’ the three-dimensional uptake isotherm surfaces at constant second-metal final concentrations. The reduction of Pb, Cu, Zn, Cd and Cr uptakes at its final equilibrium concentrations of 1 mM at pH 4.5 was 78.4%, 82.7%, 85.1%, 89.8% and 51.2% in the presence of 1mM Al ion, respectively. The presence of Al ion greatly affected the uptake of all heavy metals tested except Cr.  相似文献   

18.
生物法去除水中重金属离子的研究   总被引:11,自引:0,他引:11  
微生物去除水中的重金属离子是微生物利用一个新的研究领域,微生物的这种性质在处理含有重金属离子的废水溶液中具有广阔的应用前景。本文对微生物去除重金属离子的原理,去除过程中的影响因素:溶液pH值、重金属离子的初始浓度、生物去除剂的预处理、去除时间、去除温度以及重金属离子的回收和重复使用等作了详细的综述。  相似文献   

19.
《分离科学与技术》2012,47(3):597-608
Abstract

The Zr(IV) and Hf(IV) biosorption characteristics of rice bran, wheat bran and Platanus orientalis tree leaves were examined as a function of initial pH, contact time, temperature, and initial metal ions concentration. Adsorption equilibriums were achieved in about 1, 5 and 40 min for rice bran, wheat bran, and leaves respectively. The biosorption behavior of leaves was significantly affected by solution pH whereas rice bran and wheat bran adsorption efficiencies were slightly affected by solution pH. The Freundlich and Langmuir adsorption equations, which are commonly used to describe sorption equilibrium for metals removal by biomasses, were use to represent the experimental and equilibrium data fitted well to the Langmuir isotherm model. The negative Gibbs free energy values obtained in this study with rice bran wheat bran and Platanus orientalis tree leaves confirmed the feasibility of the process and the spontaneous nature of sorption. In the optimum conditions, the adsorption efficiencies of other metal ions such as Fe3+, Cu2+, Pb2+, Hg2+, La3+, Ce3+ were significantly lower than Zr(IV) and Hf(IV) ions and these biomasses are excellent sorbents for the selective uptake of proposed ions from acidic aqueous solutions.  相似文献   

20.
The influence of an aerobic selector on biosorption of Cu and Cr(VI) by activated sludge was studied. In‐vitro batch adsorption tests were performed using sludge harvested from bench‐scale activated sludge systems. Metal biosorption by activated sludge was rapid with equilibrium usually reached within an hour. Adsorption behaviour closely followed a Freundlich isotherm model. Experimental data suggested that an aerobic selector increased the biosorption of the metal ions by activated sludge, confirming observations by others in a similar study but with different heavy metals. Freundlich isotherms indicated that the biosorption capacity of activated sludge was increased by 15% for Cu and 30% for Cr(VI). Activated sludge from both systems had a greater biosorption capacity for Cu than for Cr(VI). The effects of pH and sludge concentration were also investigated. The results indicate that these parameters may influence the biosorption characteristics of activated sludge. © 2002 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号