首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LaxSr2−xMnO4 (0 ≤ x ≤ 0.8) oxides were synthesized and single-phase K2NiF4-type oxides were obtained in the range of 0.1 ≤ x < 0.5. The catalytic activity of LaxSr2−xMnO4 for NO–CO reaction increased with increasing x in the range of solubility limit of La. La0.5Sr1.5MnO4 showed the highest activity among LaxSr2−xMnO4 prepared in this study, but its activity was inferior to perovskite-type La0.5Sr0.5MnO3. Among the Pd-loaded catalysts, however, Pd/La0.8Sr1.2MnO4 showed the higher activity and the selectivity to N2 than Pd/La0.5Sr0.5MnO3 and Pd/γ-Al2O3. The excellent catalytic performance of Pd/La0.2Sr1.2MnO4 could be ascribable to the formation of SrPd3O4 which was detected by XRD in the catalyst but not in the other two catalysts.  相似文献   

2.
Ultrafine lithium ion conducting La2/3−xLi3xTiO3 (x = 0.11, LLT) powder was synthesized by a simple polymerizable complex method based on the Pechini-type process. The formation mechanism, homogeneity and microstructure of the samples were investigated by thermal analysis (TG/DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). XRD analysis indicated the formation of pure perovskite-type phase. The powder synthesized at a temperature as low as 900 °C in a much shorter time than solid-state reaction method was well crystallized. The lithium ion conductivity of the LLT ceramics sintered at 1200 °C was found to be 9 × 10−4 S/cm at room temperature.  相似文献   

3.
Ceramics with a composition close to BaZn2Ti4O11 were synthesized according to various substitutional mechanisms in order to verify an existence of a homogeneity range in the vicinity of this composition. Structural and microstructural investigations showed that the crystal structure of BaZn2Ti4O11 was formed in the homogeneity range corresponding to the formula BaZn2 − xTi4O11 − x (0 < x < 0.1). Densely sintered BaZn2 − xTi4O11 − x (0 < x < 0.1) ceramics exhibited a dielectric constant around 30, τf = −30 ppm/K and high Q × f values, which increased from 68,000 GHz at x = 0 to 83,000 GHz at x = 0.05. Structurally, the deficiency of Zn in BaZn2 − xTi4O11 − x (0 < x < 0.1) resulted in a slight decrease in the unit-cell volume. The influence of secondary phases in the BaZn2Ti4O11-based materials on the microwave dielectric properties was also investigated. A presence of small amounts of ZnO, BaTiO3, hollandite-type solid solutions (BaxZnxTi8 − xO16) and BaTi4O9 caused a decrease in Q × f values.  相似文献   

4.
The structure evolution, and microwave dielectric properties of Nd(2−x)/3LixTiO3 ceramics (0 ≤ x ≤ 0.5) were investigated in this paper. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results show that samples with x = 0.2–0.4 exhibit single phase. Multi-phases of Nd2Ti2O7, Nd2/3TiO3 and Nd2Ti4O11 were observed when x = 0 and 0.1. The concentration and ordering degree of A-site decrease with the increase of x value. The dielectric constant increases up to x = 0.2 and then decreases with the further increase of x value. The Qf value decreases with the increase of x value. The temperature coefficient of resonant frequency exhibits negative value and the absolute value decreases greatly with the decrease of x value.  相似文献   

5.
Layered Li[Ni(1−x)/3Mn(1−x)/3Co(1−x)/3Crx]O2 materials with x = 0, 0.01, 0.02, 0.03, 0.05 are prepared by a solid-state pyrolysis method. The oxide compounds were calcined with various Cr-doped contents, which result in greater difference in morphological (shape, particle size and specific surface area) and the electrochemical (first charge profile, reversible capacity and rate capability) differences. The Li[Ni(1−x)/3Mn(1−x)/3Co(1−x)/3Crx]O2 powders were characterized by means of X-ray diffraction (XRD), charge/discharge cycling, cyclic voltammetry, and SEM. XRD experiment revealed that the Li[Ni(1−x)/3Mn(1−x)/3Co(1−x)/3Crx]O2 (x = 0, 0.01, 0.02, 0.03, 0.05) were crystallized to well layered -NaFeO2 structure. The first specific discharge capacity and coulombic efficiency of the electrode of Cr-doped materials were higher than that of pristine material. When x = 0.02, the sample showed the highest first discharge capacity of 241.9 mAh g−1 at a current density of 30 mA g−1 in the voltage range 2.3–4.6 V, and the Cr-doped samples exhibited higher discharge capacity and better cycleability under medium and high current densities at room temperature.  相似文献   

6.
The sintering properties of La1−xSrxFeO3−δ (x = 0.1, 0.25) mixed conductors have been investigated with particular emphasis on the effect of secondary phases due to cation non-stoichiometry (±5 mol% La excess and deficiency). Secondary phases, located at grain boundaries in cation non-stoichiometric materials, increased the sintering temperature compared to single-phase materials. Extensive swelling in final stage of sintering was observed in all materials, which resulted in micro-porous materials. The swelling was most pronounced in the phase pure and two-phase materials due to La-deficiency, while refractory secondary phases in La-excess materials inhibited both sintering, grain growth and swelling. In La-deficient materials, formation of molten secondary phases resulted in rapid swelling due to viscous flow. The present findings demonstrated the importance of controlling sintering temperature and time, as well as careful control of the cation stoichiometry of La1−xSrxFeO3−δ in order to achieve fully dense and homogenous La1−xSrxFeO3−δ ceramics.  相似文献   

7.
Electrical resistivity and Seebeck (S) measurements were performed on (La1−xSrx)MnO3 (0.02x0.50) and (La1−xSrx)CoO3 (0x0.15) in air up to 1073 K. (La1−xSrx)MnO3 (x0.35) showed a metal-to-semiconductor transition; the transition temperature almost linearly increased from 250 to 390 K with increasing Sr content. The semiconductor phase above the transition temperature showed negative values of S. (La1−xSrx)CoO3 (0x0.10) showed a semiconductor-to-metal transition at 500 K. Dominant carriers were holes for the samples of x0.02 above room temperature. LaCoO3 showed large negative values of S below ca. 400 K, indicative of the electron conduction in the semiconductor phase.  相似文献   

8.
Perovskites of different La1−xSrxAl1−yyFeyMgyO3−δ compositions (x=0, 0.1, 0.15, 0.2 and y=0.1, 0.3, 0.5, 0.8) were prepared from a reactive precursor slurry of hydrated oxides. Each sample was aged between 16 and 26 h up to 1473 K. Activity in methane combustion (1%/air) was determined in a plug-flow reactor, with 1 g catalyst and 24 l/h flowrate. Gradual decrease in activity due to thermal aging was observed, the degree of activity loss being composition dependent. Nevertheless, activity of samples aged at 1370 K was nearly independent of composition. The best thermal stability showed LaAl0.65Fe0.15Mg0.2O3 perovskite. None of the magnesium substituted perovskites performed better than a La0.85Sr0.15Al0.87Fe0.13O3 reference sample.  相似文献   

9.
The activities of perovskites depend on compositions and preparation methods. Various perovskites, La1−xMxMnO3 (M=Ag, Sr, Ce, La), have been prepared by two different methods (co-precipitation and spray decomposition). The new preparation method, spray decomposition, produced perovskites of a high surface area of over 10 m2/g. The catalytic activities for CH4 and CO oxidation have been studied on a series of catalysts, La1−xMxMnO3. The perovskite-type oxide, La0.7Ag0.3MnO3, shows the highest catalytic activity: the complete conversion of CO and CH4 at 370 and 825 K, respectively.  相似文献   

10.
Catalytic methane combustion and CO oxidation were investigated over AFeO3 (A=La, Nd, Sm) and LaFe1−xMgxO3 (x=0.1, 0.2, 0.3, 0.4, 0.5) perovskites prepared by citrate method and calcined at 1073 K. The catalysts were characterized by X-ray diffraction (XRD). Redox properties and the content of Fe4+ were derived from temperature programmed reduction (TPR). Specific surface areas (SA) of perovskites were in 2.3–9.7 m2 g−1 range. XRD analysis showed that LaFeO3, NdFeO3, SmFeO3 and LaFe1−xMgxO3 (x·0.3) are single phase perovskite-type oxides. Traces of La2O3, in addition to the perovskite phase, were detected in the LaFe1−xMgxO3 catalysts with x=0.4 and 0.5. TPR gave evidence of the presence in AFeO3 of a very small fraction of Fe4+ which reduces to Fe3+. The fraction of Fe4+ in the LaFe1−xMgxO3 samples increased with increasing magnesium content up to x=0.2, then it remained nearly constant. Catalytic activity tests showed that all samples gave methane and CO complete conversion with 100% selectivity to CO2 below 973 and 773 K, respectively. For the AFeO3 materials the order of activity towards methane combustion is La>Nd>Sm, whereas the activity, per unit SA, of the LaFe1−xMgxO3 catalysts decreases with the amount of Mg at least for the catalysts showing a single perovskite phase (x=0.3). Concerning the CO oxidation, the order of activity for the AFeO3 materials is Nd>La>Sm, while the activity (per unit SA) of the LaFe1−xMgxO3 catalysts decreases at high magnesium content.  相似文献   

11.
(Mg1−xZnx)2SiO4 ceramics were prepared and characterized. The densification temperatures of the present ceramics are much lower than those for Mg2SiO4 and Zn2SiO4 end-members. Small solid solution limits of Zn in Mg2SiO4 and Mg in Zn2SiO4 are observed, and the bi-phase structure is confirmed in (Mg1−xZnx)2SiO4 ceramics with x = 0.1–0.9. Even though, it is clear that the Qf value of Zn2SiO4 ceramics can be significantly improved together with a suppressed temperature coefficient of resonant frequency τf by substituting Mg for Zn. (Mg0.4Zn0.6)2SiO4 ceramics indicate a good combination of microwave dielectric characteristics: r = 6.6 Qf = 95,650 GHz, and τf = −60 ppm/°C.  相似文献   

12.
A series of the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts (x = 0–1) were prepared. The structure of the catalysts was characterized using XRD, SEM and H2-TPR. The catalytic activity of the catalysts for the combustion of methane was evaluated. The results indicated that in the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts the surface phase structure were the Ce1−xCuxO2−x solid solution, -Al2O3 and γ-Al2O3. The surface particle shape and size were different with the variety of the molar ratio of Ce to Cu in the Ce1−xCuxO2−x solid solution. The Cu component of the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts played an important role to the catalytic activity for the methane combustion. There were the stronger interaction among the Ce1−xCuxO2−x solid solution and the Al2O3 washcoats and the FeCrAl support.  相似文献   

13.
Ten weight percent BBZS (Bi2O3, B2O3, ZnO and SiO2) glass was added to x(Ba4Nd9.333Ti18O54) − (1 − x)(BaLa4Ti4O15) (BNLT, 0 ≤ x ≤ 1) composite dielectric ceramics to lower their sintering temperature whilst retaining microwave properties useful for low temperature co-fired ceramic and antenna core technology. With the addition of 10 wt% BBZS glass, dense BNLT composite ceramics were produced at temperatures between 950 and 1140 °C, depending on composition (x), an average reduction of sintering temperature by 350 °C. X-ray diffraction, scanning and transmission electron microscopy and Raman spectroscopy studies revealed that there was limited inter-reaction between BLT/BNT and the BBZS glass. Microwave property measurement showed that the addition of BBZS glass to BNLT ceramics had a negligible effect on r and τf, although deterioration in the measured quality factor (Qf) was observed. The optimised composition (xBNT − (1 − x)BLT)/0.1BBZS (x = 0.75) had r  61, τf  38 ppm/°C and Qf  2305 GHz.  相似文献   

14.
Nanometer perovskite-type oxides La1−xSrxMO3−δ (M = Co, Mn; x = 0, 0.4) have been prepared using the citric acid complexing-hydrothermal-coupled method and characterized by means of techniques, such as X-ray diffraction (XRD), BET, high-resolution scanning electron microscopy (HRSEM), X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption (TPD), and temperature-programmed reduction (TPR). The catalytic performance of these nanoperovskites in the combustion of ethylacetate (EA) has also been evaluated. The XRD results indicate that all the samples possessed single-phase rhombohedral crystal structures. The surface areas of these nanomaterials ranged from 20 to 33 m2 g−1, the achievement of such high surface areas are due to the uniform morphology with the typical particle size of 40–80 nm (as can be clearly seen in their HRSEM images) that were derived with the citric acid complexing-hydrothermally coupled strategy. The XPS results demonstrate the presence of Mn4+ and Mn3+ in La1−xSrxMnO3−δ and Co3+ and Co2+ in La1−xSrxCoO3−δ, Sr substitution induced the rises in Mn4+ and Co3+ concentrations; adsorbed oxygen species (O, O2, or O22−) were detected on the catalyst surfaces. The O2-TPD profiles indicate that Sr doping increased desorption of the adsorbed oxygen and lattice oxygen species at low temperatures. The H2-TPR results reveal that the nanoperovskite catalysts could be reduced at much lower temperatures (<240 °C) after Sr doping. It is observed that under the conditions of EA concentration = 1000 ppm, EA/oxygen molar ratio = 1/400, and space velocity = 20,000 h−1, the catalytic activity (as reflected by the temperature (T100%) for EA complete conversion) increased in the order of LaCoO2.91 (T100% = 230 °C) ≈ LaMnO3.12 (T100% = 235 °C) < La0.6Sr0.4MnO3.02 (T100% = 190 °C) < La0.6Sr0.4CoO2.78 (T100% = 175 °C); furthermore, there were no formation of partially oxidized by-products over these catalysts. Based on the above results, we conclude that the excellent catalytic performance is associated with the high surface areas, good redox properties (derived from higher Mn4+/Mn3+ and Co3+/Co2+ ratios), and rich lattice defects of the nanostructured La1−xSrxMO3−δ materials.  相似文献   

15.
Nanoparticles of CexZr1−xO2 (x = 0.75, 0.62) were prepared by the oxidation-coprecipitation method using H2O2 as an oxidant, and characterized by N2 adsorption, XRD and H2-TPR. CexZr1−xO2 prepared had single fluorite cubic structure, good thermal stability and reduction property. With the increasing of Ce/Zr ratio, the surface area of CexZr1−xO2 increased, but thermal stability of CexZr1−xO2 decreased. The surface area of Ce0.62Zr0.38O2 was 41.2 m2/g after calcination in air at 900 °C for 6 h. TPR results showed the formation of solid solution promoted the reduction of CeO2, and the reduction properties of CexZr1−xO2 were enhanced by the cycle of TPR-reoxidation. The Pd-only three-way catalysts (TWC) were prepared by the impregnation method, in which Ce0.75Zr0.25O2 was used as the active washcoat and Pd loading was 0.7 g/L. In the test of Air/Fuel, the conversion of C3H8 was close to 100% and NO was completely converted at λ < 1.025. The high conversion of C3H8 was induced by the steam reform and dissociation adsorption reaction of C3H8. Pd-only catalyst using Ce0.75Zr0.25O2 as active washcoat showed high light off activity, the reaction temperatures (T50) of 50% conversion of CO, C3H8 and NO were 180, 200 and 205 °C, respectively. However, the conversions of C3H8 and NO showed oscillation with continuously increasing the reaction temperature. The presence of La2O3 in washcoat decreased the light off activity and suppressed the oscillation of C3H8 and NO conversion. After being aged at 900 °C for 4 h, the operation windows of catalysts shifted slightly to rich burn. The presence of La2O3 in active washcoat can enhance the thermal stability of catalyst significantly.  相似文献   

16.
Catalytic combustion of methane has been investigated over AMnO3 (A = La, Nd, Sm) and Sm1−xSrxMnO3 (x = 0.1, 0.3, 0.5) perovskites prepared by citrate method. The catalysts were characterized by chemical analysis, XRD and TPR techniques. Catalytic activity measurements were carried out with a fixed bed reactor at T = 623–1023 K, space velocity = 40 000 N cm3 g−1 h−1, CH4 concentration = 0.4% v/v, O2 concentration = 10% v/v.

Specific surface areas of perovskites were in the range 13–20 m2 g−1. XRD analysis showed that LaMnO3, NdMnO3, SmMnO3 and Sm1−xSrxMnO3 (x = 0.1) are single phase perovskite type oxides. Traces of Sm2O3 besides the perovskite phase were detected in the Sm1−xSrxMnO3 catalysts for x = 0.3, 0.5. Chemical analysis gave evidence of the presence of a significant fraction of Mn(IV) in AMnO3. The fraction of Mn(IV) in the Sm1−xSrxMnO3 samples increased with x. TPR measurements on AMnO3 showed that the perovskites were reduced in two steps at low and high temperature, related to Mn(IV) → Mn(III) and Mn(III) → Mn(II) reductions, respectively. The onset temperatures were in the order LaMnO3 > NdMnO3 > SmMnO3. In Sm1−xSrxMnO3 the Sr substitution for Sm caused the formation of Mn(IV) easily reducible to Mn(II) even at low temperature. Catalytic activity tests showed that all samples gave methane complete conversion with 100% selectivity to CO2 below 1023 K. The activation energies of the AMnO3 perovskites varied in the same order as the onset temperatures in TPR experiments suggesting that the catalytic activity is affected by the reducibility of manganese. Sr substitution for Sm in SmMnO3 perovskites resulted in a reduction of activity with respect to the unsubstituted perovskite. This behaviour was related to the reduction of Mn(IV) to Mn(II), occurring under reaction conditions, hindering the redox mechanism.  相似文献   


17.
Perovskite type La1 − xSrxMnO3 (x = 0–0.5) oxides were prepared by the amorphous citrate process, characterised by X-ray diffraction, oxygen desorption, temperature-programmed reduction, infrared and X-ray photoelectron spectroscopic techniques, and tested for methane combustion within the 473–1073 K temperature range. Since catalyst activity was found to depend strongly on BET areas and to a lesser extent, on the degree of substitution (x), intrinsic activities were computed for La1 − xSrxMnO3 catalyst series. Among the compositions investigated, the degree of substitution x = 0.2 showed the highest intrinsic activity within the temperatures explored. Characterisation techniques made possible to correlate catalytic performance with the structural characteristics of the oxides. The stability of Mn4+ is probably the most important parameter, but excess of oxygen and atomic surface composition should also be taken into account.  相似文献   

18.
The effect of introduction of alkalies (Me = Li, K, Cs) into SrTiO3 on the physico-chemical properties of resulted materials and their catalytic activity in soot combustion was studied. Two groups of SrTiO3 based perovskites were prepared: substituted in A-position of the structure (Sr1 − xMexTiO3, x = 0.05–0.2) and impregnated with the same amount of alkali metals. Prepared materials exhibit low specific surface area and perovskite structure, only these ones impregnated with the highest amount of Cs (K) show weak XRD signals of Me2O. TPD-O2 experiments show bimodal profiles of O2 desorption curves with maximums corresponding to individual step of alkali nitrates thermal decomposition. It is supposed that second peak of O2 desorption from impregnated SrTiO3 can be related to reversible decomposition of MeNO3. XPS shows that surface of SrTiO3 substituted with K (Cs) is much richer in these elements than the surface of impregnated one. Prepared materials lower the temperature of soot ignition from 530 (inert) to 470 °C for SrTiO3 and to 302–303 °C for Sr0.8K0.2TiO3 and Sr0.8K0.2TiO3, respectively. Substituted materials are more active in soot combustion than impregnated ones. A mechanism explaining effect of alkali metals nitrate addition to SrTiO3 on its catalytic activity in soot combustion is proposed.  相似文献   

19.
It is known that Curie temperature of barium titanate system can be altered by the substitution of dopants into either A- or B-site. Dopants could pinch transition temperature, lower Curie temperature, and raise the rhombohedral–orthorhombic and orthorhombic–tetragonal phase transition close to room temperature. This isovalent substitution could improve the ferroelectric properties of the BaTiO3-based system. In this study, barium zirconate titanate Ba(ZrxTi1−x)O3 (BZT; x = 0, 0.02, 0.05 and 0.08) ceramics were prepared by conventionally mixed-oxide method. The ferroelectric properties of BZT ceramics were investigated. Increasing Zr content in the BaTiO3-based compositions caused a decrease in Curie temperature (Tc). At Tc, the highest relative permittivity of BZT with an addition of 0.08 mol% of Zr was 12,780. The BZT specimens with the additions of 0.05 mol% and 0.08 mol% of Zr presented the remanent polarization at 25 μC/cm2 and 30 μC/cm2, respectively.  相似文献   

20.
R. Karita  H. Kusaba  K. Sasaki  Y. Teraoka   《Catalysis Today》2007,126(3-4):471-475
K2NiF4-type La0.2Sr1.8MnO4 was synthesized by nitrate (ND) and nitrate/acetate (NAD) decomposition methods as well as solid-state reaction. Single-phase oxide was obtained at 550 °C by the ND method just after the decomposition of Sr(NO3)2 and at 1000 °C by the NAD method after the decomposition of SrCO3. The K2NiF4-type oxide was hardly formed by the solid-state reaction. In the La–Sr–Mn system, an intermediate compound of SrCO3, if present or formed during the decomposition process, interfered with the low-temperature formation of the K2NiF4-type oxide because of its high decomposition temperature about 1000 °C. The ND method used only metal nitrates and no starting materials with carbon source, so that the low-temperature synthesis of the K2NiF4-type oxide was realized without forming obstinate intermediate compound of SrCO3. The low-temperature synthesis was possible for LaxSr2−xMnO4 with the substitution of La (0 < x < 0.5) and not for La0.2A1.8MnO4 (A = Ca and Ba). The effect of A-site cations on the K2NiF4-phase formation was discussed from the geometric aspect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号