共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
基于近似精度递归计算的一个属性约简算法 总被引:7,自引:0,他引:7
叶东毅 《小型微型计算机系统》2003,24(12):2272-2274
首先分析粗糙集中不同正区域之间的关系,在此基础上推导出近似精度计算的一个简洁的递归公式。在Jelonek属性约简算法的基础上,应用上述递归公式和独立性条件判别策略设计了一个改进的属性约简算法,与原算法相比,不仅在算法速度提高方面取得了明显的效果,而且保证了约简算法的正确性。 相似文献
3.
粗糙集理论是一个新的处理不确定性问题的数学工具,属性约简是粗糙集理论的核心问题之一。但求解最优约简已被证明是一个NP—hard问题。基于属性重要度的启发式算法在属性约简中应用的较多.文中分别介绍了基于区分矩阵、基于相关矩阵和基于信息量的属性约简算法。对其思想进行了剖析和总结。 相似文献
4.
本文主要研究基于粗糙集理论的属性约简算法.提出了一种基于属性重要度和相关度的启发式约简算法.并通过算例验证了该算法的可行性和有效性. 相似文献
5.
针对目前道路交通肇事逃逸案件逐年增多情况,利用改进后的粗糙集属性约简算法对案件记录卷宗中的大量数据进行约简处理,得到和原始数据等效的属性约简集,将此约简集作为挖掘的数据基础,大大缩小了数据量,使得侦破人员可以将注意力集中于重要的物证采集上,减少了案件侦破中不必要的人、财、物消耗,同时数据量的减小也相应的加快了挖掘的速度。将在此约简集基础上挖掘得到的规则和关联规则算法得出的规则进行比较,证明改进后的约简算法是有效的。 相似文献
6.
7.
8.
邻域粗糙集是数值型属性数据处理的有效工具.基于邻域粗糙集,传统依赖度及其约简未考虑邻域覆盖的绝对结构,由此文中建立加权依赖度及其启发式约简算法.首先,提出加权依赖度并得到其度量改进性与粒化单调性,定义相关的属性约简.然后,分析邻域半径的自适应取值,构造基于加权依赖度的启发式约简算法(NWDR).最后,在UCI数据集上进行对比实验,验证加权依赖度的单调性与NWDR的有效性.实验证明,加权依赖度改进传统依赖度的不确定性表示能力,NWDR具有较高的分类准确率与较强的应用适应性. 相似文献
9.
10.
一种基于粗糙集属性频度约简算法的改进 总被引:1,自引:1,他引:0
为了获得有效的属性最小相对约简,在基于属性频度的启发式约简算法的基础上,提出了一种同时满足属性重要性和频度改进的启发式约简算法.该算法的基本思想是:以属性的核为基础,以频度作为选择属性的启发信息,即把属性频度最大的属性添加到核属性中,这样就把分类能力较强的属性添加到约简集合中,从而能够获得较优的约简. 相似文献
11.
基于信息熵的一种属性约简算法 总被引:2,自引:3,他引:2
文章针对Rough Set理论的核心内容之一属性约简进行了研究。结合信息论的有关知识,研究了在属性约简过程中决策属性集相对条件属性集的条件熵的变化规律,在此基础上提出了新的属性约简算法。实验分析表明,在多数情况下这种算法都能够得到决策表的最小约简,同时还对算法复杂度做了简单的分析。 相似文献
12.
粗糙集和信息熵的属性约简算法及其应用 总被引:2,自引:0,他引:2
阐述粗糙集理论和信息熵的基本概念,并为寻找属性约简的有效方法,提出一种基于粗糙集和信息熵的属性约简算法。在决策表中添加某个属性引起的互信息变化的大小,以反映该属性的重要性,并求相对约简。研究表明,该算法不仅能得到最优的决策规则,而且能够减少信息系统所需的搜索空间,得到更优的属性约简效果。 相似文献
13.
基于粗糙集理论的一种属性约简算法 总被引:4,自引:1,他引:4
MIBARK算法在度量属性的重要性时计算量很大,它需要多次计算不同条件属性组合与决策属性之间的互信息。论文的改进算法以属性的频率作为选择属性的启发信息,由过滤差别矩阵得到属性的频率。实验表明,在获得相同属性约简的前提下,该算法与MIBARK算法相比,属性约简的计算量较少,提高了计算速度。 相似文献
14.
基于遗传算法的粗糙集属性约简算法 总被引:20,自引:0,他引:20
属性约简是粗糙集理论中的一个核心问题,为了有效获取属性最小相对约简,本文提出了一种基于遗传算法的粗糙集属性约简算法.该算法将核引入遗传算法的初始群体来提高算法的性能,依照决策属性对条件属性的依赖度,在加强局部搜索能力的同时保持了该算法全局寻优的特性,能够获得最佳的搜索效果.实验结果证明了该算法能够快速有效的进行属性约简。 相似文献
15.
属性约简是粗糙集理论的重要研究内容之一。在Pawlak粗糙集模型中,正区域大小随着属性增多而变大,呈现单调性。然而,在决策粗糙集模型中,概率正区域与属性集之间不具有单调性,从而产生各种属性约简定义。为此,深入研究了决策粗糙集属性约简问题,阐述了几种约简定义之间的关系,证明了保持局部最大概率正区域的约简具有较大的代价,指出了保持所有对象的正决策不变的约简呈现稳定性和存在属性核。 相似文献
16.
17.
基于小生境遗传算法的粗糙集属性约简方法 总被引:2,自引:1,他引:2
针对遗传算法在全局优化问题中出现的早熟和收敛速度慢的问题,提出一种基于小生境遗传算法的粗糙集属性约简算法,采用基于淘汰相似结构机制的小生境技术,通过引入罚函数的方法调整个体的适应度,提高全局搜索能力。实验证明该算法是有效的,并能求解出信息系统中多组不同的最小约简,为决策支持和数据挖掘等提供更多信息。 相似文献
18.
基于Rough集和数据库技术的属性约简算法 总被引:6,自引:0,他引:6
对核属性的作用,以及求取属性核心的代价等进行了分析,并运用Rough集的理论给出了判定一个属性子集中是否包含属性核心的充要条件.根据这些研究结论对基于粗糙集的属性约简算法进行改进,并利用数据库查询语言实现了算法.实验表明对于大数据集,该算法的效率大大高于一些基于主存的算法,且易于实现. 相似文献
19.
遗传算法适合复杂问题的处理因此可用于属性约简的求解.目前利用遗传算法进行属性约简的主要不足是:适应度函数计算复杂,效率不高.尤其在处理大型决策表时,计算时间将大量聚集在适应度函数的计算上,从而导致算法性能下降.为了更快的计算适应度函数,在研究基于正区域的区分对象对集的基础上,设计了一种计算适应度函数的快速方法.利用启发信息设计了一种快速的属性约简遗传算法.通过实例分析和算法实验表明该算法能够高效求出决策表的属性约简并且适合处理大型决策表. 相似文献