首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
在好氧条件下,向反应器中装填悬浮填料进行脱氮试验,考察生物膜法对氨氮和总氮的去除效果.结果表明:DO为3.0 mg.L-1时,氨氮平均去除率达到89.52%、总氮平均去除率达到29.46%.在好氧条件下,生物膜脱氮效果明显,硝酸盐氮的积累使反硝化过程成为脱氮的制约因素之一.  相似文献   

2.
胡杰  颜家保  霍晓琼  陈美玲  李超 《化工进展》2019,38(3):1567-1572
针对生物法处理低C/N比废水存在碳源不足、脱氮效率不高问题,从石化废水处理厂活性污泥中分离得到一株低C/N比异养硝化-好氧反硝化菌株WUST-7。通过形态学观察、生理生化试验和16S rDNA序列分析,鉴定其为假单胞菌属(Pseudomonas sp.)。通过单因素实验,考察碳源种类、培养温度、初始pH和摇床转速对菌株硝化性能的影响,确定最优异养硝化培养条件为:丁二酸钠为碳源、培养温度30~35℃、初始pH8.0~9.0、摇床转速150~200r/min。在最优异养硝化条件下培养9h,可将初始浓度为107.52mg/L的氨氮去除90.64%,并且在整个培养过程中没有亚硝酸盐氮的积累,硝酸盐氮含量也始终低于3.5mg/L,总氮的去除率达88.63%。实验结果表明,菌株WUST-7在利用氨氮进行硝化反应的同时,还可以利用硝酸盐氮进行反硝化,具有良好的同步硝化反硝化潜能。  相似文献   

3.
简述了国内外近几年氨氮脱除的生物技术研究进展情况。近年来出现了短程硝化反硝化、同时硝化反硝化和厌氧氨氧化等生物脱氮的新概念和新技术,为生物脱氮技术开拓了新的发展空间;同时特殊菌株的筛选和培育也是氨氮脱除生物技术发展的热点之一。最近的研究结果表明存在着单细胞细菌好氧代谢过程氨氧化耦合脱除氨氮的可能性与可行性。  相似文献   

4.
城市污水连续流A/O系统富氧条件下脱氮特征   总被引:1,自引:0,他引:1       下载免费PDF全文
胡家玮  李军  卞伟  郑林雪  王盟 《化工学报》2014,65(10):4071-4077
基于添加流离填料的连续流A/O生物膜反应器,研究城市污水生物脱氮特征。系统在富氧条件(溶解氧大于1.5 mg·L-1)下连续运行113 d,氨氮和总氮去除率均稳定在50%。系统稳定运行阶段好氧区和出水均无亚硝酸盐或硝酸盐积累现象,表现出良好的同步硝化反硝化特征。16S rDNA分析表明,实现这一现象的主要功能细菌为好氧区存在的好氧反硝化菌;FISH分析表明,不同好氧区的好氧反硝化菌的活性和相对数量不同。结果证明系统内发生的同步硝化反硝化主要由好氧反硝化作用实现,硝化反应产生的硝酸盐类物质得到去除。根据试验结果与微生物学分析,提出了在富氧水环境中通过同步硝化反硝化途径脱氮的生物膜模型。  相似文献   

5.
一体化复合式生物反应器的脱氮研究   总被引:1,自引:1,他引:0  
利用自制的一体式缺氧/好氧(A/O)复合式生物反应器(HBR),对高浓度氨氮废水进行了脱氮研究.结果表明,当进水COD浓度在950~1100 mg·L-1、氨氮浓度增加到150 mg·L-1时系统COD、氨氮去除率开始下降;在好氧区内检测到大量的NO-2-N积累,表明HBR的脱氮作用部分是通过短程硝化-反硝化途径实现的.且复合式生物反应器填料内部存在多种多样的微环境类型以及缺氧/好氧内循环,造成反应器缺氧、好氧区都发生了同步硝化-反硝化反应.  相似文献   

6.
生活污水不同生物脱氮过程中N_2O产量及控制   总被引:7,自引:2,他引:5       下载免费PDF全文
巩有奎  王赛  彭永臻  王淑莹 《化工学报》2010,61(5):1286-1292
利用好氧-缺氧SBR反应器和全程曝气SBBR反应器处理生活污水,分别实现了全程、短程和同步硝化反硝化脱氮过程,研究了不同脱氮过程中N2O的产生及释放情况,同时考察了不同DO条件下同步脱氮效率及N2O产生量。结果表明,全程、短程生物脱氮过程中N2O主要产生于硝化过程,反硝化过程有利于降低系统N2O产量。全程、短程、同步硝化反硝化脱氮过程中N2O产量分别为4.67、6.48和0.35mg.L-1。硝化过程中NO2-N的积累是导致系统N2O产生的主要原因。部分AOB在限氧条件下以NH4+-N作为电子供体,NO2-N作为电子受体进行反硝化,最终产物是N2O。不同DO条件下同步硝化反硝化过程中N2O的产生表明:控制SBBR系统中DO浓度达到稳定的同步脱氮效率可使系统N2O产量最低。  相似文献   

7.
变电站高氨氮含量废水环境危害大,是水处理领域亟待解决的问题。在缺氧-好氧管式膜膜生物反应器建立短程硝化反硝化过程处理高氨氮含量废水,系统考察了膜生物反应器中聚氨酯填料投加的强化脱氮效果及对膜污染的控制。结果表明:填料可以提高好氧池生物量,改善硝化过程,并通过填料内部的厌氧微环境实现同步硝化反硝化。在填料填充10%、回流比200%时,氨氮和总氮去除率达到92%和68%,同步硝化反硝化对总氮去除贡献约10%,膜清洗间隔可延长至11 d。  相似文献   

8.
好氧微生物颗粒污泥脱氨机理   总被引:3,自引:0,他引:3  
好氧颗粒污泥应用于生物脱氮,机理为如下几种.第一种为常规硝化-反硝化途径.第二种为亚硝化-反硝化途径,颗粒污泥的外部为好氧的硝化区,通过适当的控制,使硝化过程停留在亚硝化阶段,直接进入内层进行反硝化.第三种为硝化-厌氧氨氧化途径,通过外层的硝化和内层的厌氧氨氧化作用实现脱氮.第四种为硝化-反硝化聚磷方式,颗粒污泥内部在反硝化的同时聚磷,实现好氧颗粒污泥同步脱氮除磷.第五种脱氮的途径为好氧反硝化.在不同的条件下,某一种脱氮的途径可能占主导地位.  相似文献   

9.
从活性污泥中分离得到异养硝化菌株Y1,该菌的最优硝化条件:C/N为9.6,温度为30%,初始pH为9.0,摇床转速为250r/min。在此条件下,初始浓度为152.88mg/L的氨氮经8h降解后浓度降低到4.02mg/L,硝化过程中未发现中间产物亚硝酸氮和硝酸氮积累。菌株Y.不仅具有异养硝化作用,还能以硝酸氮作为唯一氮源进行好氧反硝化作用,40h内对初始浓度为196mg/L的NO3--N降解率为99.05%。  相似文献   

10.
高氨氮、高盐、含有机物的食品工业污水处理难度大、周期长,添加高效硝化菌株可以大幅提高污水处理效率。本研究通过高盐培养基,从腌渍食品厂排放污水中筛选出一株对复杂环境有较强耐受性的新型高效异养硝化-好氧反硝化菌株JG441,经鉴定为Bacillus sp.,对其脱氮条件、异养硝化、好氧反硝化、极端环境耐受和脱氮通路进行研究。结果表明,菌株JG441可以利用(NH4)2SO4和KNO3为氮源进行异养硝化和好氧反硝化;在NaCl浓度为30g·L-1,苯酚浓度为400mg·L-1时,24h NH4+-N去除率可达99%,在NH4+-N浓度为500mg·L-1时,24h NH4+-N去除率为57.4%。菌株JG441脱氮能力强,在高盐含氮和成分复杂的污水处理方面具有较好应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号