共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
用电化学法控电位制备石墨烯/Co2O3-NiO薄膜电极,通过XRD、Raman、SEM、TEM等仪器对所制备的薄膜进行表征。复合材料中Ni和Co主要以NiO和Co2O3的形式负载于石墨烯的表面,直径在50~200 nm之间。循环伏安测试结果表明,石墨烯/Co2O3-NiO复合材料性能较纯石墨烯材料明显提升。恒电流充放电测试表明,石墨烯/Co2O3-NiO复合材料具有高比电容,在2 A/g的电流密度下,复合材料的比电容最高达到503 F/g,循环500次后比电容保持率为91%。 相似文献
4.
用双氧水造孔得到多孔氧化石墨,以尿素为氮源,通过水热法得到了多孔氮掺杂石墨烯(HNG)与MnO2的复合物HNG/MnO2.结果 表明:HNG/MnO2在0.5 A/g电流密度下的比电容可以达到246 F/g,当电流密度达10 A/g,比电容为172 F/g,可以保留70%的比电容.将HNG/MnO2作为正极与石墨烯水凝胶负极组装的非对称超级电容器,在0.5 A/g可以贡献71 F/g的比电容,当电流升至5 A/g仍可有43 F/g的比电容,保持率为62%.此外,非对称超级电容器在5 A/g的电流密度下,稳定循环3000圈后仍可保留90.8%的初始容量. 相似文献
5.
6.
以石墨为原料高效、绿色、低成本制备少层石墨烯,对石墨烯的规模化生产和应用具有非常重要的意义。电化学阴极剥离法是一种高效制备少层石墨烯的方法,但已有的报道均采用有机溶液体系,成本高且不够绿色环保。开发了一种绿色的水溶液电化学剥离方法,在6 mol·L-1 KOH溶液中,将石墨作为阴极进行快速剥离制备出少层石墨烯。获得的少层石墨烯具有含氧量低[1.27%(质量)]、缺陷少(ID/IG < 0.035)、片径尺寸为5~10 μm、高电导率(大于200 S·cm-1)以及良好溶液可加性等特点。基于此,采用叉指型掩模板辅助过滤的方法可以高效制备出图案化石墨烯基平面微电极,在硫酸-聚乙烯醇凝胶电解液中,构筑的准固态微型电容器在没有金属集流体存在的情况下,表现出高扫描速率,达到了100000 mV·s-1,弛豫时间常数低至24 ms;以1-乙基-3甲基-咪唑双(三氟甲基磺酰基)亚胺和双(三氟甲基磺酰基)亚胺锂盐的混合液为电解液,所构建的微型超级电容器的工作电压达4.0 V,体积能量密度为113 mW·h·cm-3,远高于目前报道的微型超级电容器的电化学性能(<50 mW·h·cm-3)。 相似文献
7.
分别采用物理球磨混合法、化学原位聚合法和化学原位聚合-还原法制备了聚吡咯/氧化石墨烯混合物、聚吡咯/氧化石墨烯(PPy/GO)和聚吡咯/还原氧化石墨烯(PPy/RGO)复合材料。通过三电极测试其电化学性能(循环伏安、恒流充放电和交流阻抗)。结果表明,通过化学原位聚合法制备的PPy/GO(304. 5 F/g)比电容远高于物理混合(16 F/g)和聚吡咯/还原氧化石墨烯(126. 4 F/g)。化学法原位聚合法制备PPy/GO最佳条件是冰浴条件下和加入表面活性剂对羟基苯磺酸钠。并通过X射线衍射(XRD)和扫描电子显微镜(SEM)对化学原位制备的PPy/GO组成、结构和形貌进行了表征。 相似文献
8.
在有机溶剂中超声剥离膨胀石墨制备单层和多层石墨烯,对其微观形貌和结构进行表征,采用四探针表征方法考察了溶剂、时间和还原剂对石墨烯电导率的影响,优化了制备工艺参数,分析了石墨烯的性能. 结果表明,以丙酮为分散剂时石墨烯导电率最高,可达219.09 S/cm,石墨烯具有良好的电化学性能,比电容达18.8 F/g,在pH=7的磷酸盐缓冲溶液中,在0.1 V电压下对Pb2+有灵敏的溶出峰,检出限位达0.05 mmol/L. 相似文献
9.
10.
采用螯合法制备了RGO/δ-MnO2复合材料,并用X射线粉末衍射(XRD)、低压氮气吸附脱附(BET)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱(EDS)、热重(TGA)对其结构和物相进行表征。采用循环伏安测试(CV)、恒电流充放电(GCD)以及循环测试对所制材料电化学储能进行测试。结果表明RGO/δ-MnO2复合材料比纯石墨烯和纯δ-MnO2具有更优异的电化学性能。当电流密度为1 A·g-1时,RGO/δ-MnO2复合材料的比电容可达322.6 F·g-1,比纯δ-MnO2电极材料高234.2 F·g-1,比纯石墨烯高212.1 F·g-1。当电流密度放大10倍后,RGO/δ-MnO2复合材料的比电容保留率为79.1%。在1000次恒流充放电测试后,比电容为252 F·g-1(99.6%),说明该方法制备的RGO/δ-MnO2复合材料是一种有应用前景的超级电容器电极材料。 相似文献
11.
氢氧化镍电极的修饰及电化学性能的研究 总被引:1,自引:0,他引:1
镍系列二次电池的正极活性物质Ni(OH)2的晶型和镍电极的制备工艺对电池的性能具有较大的影响。文章以镍-氢电池作为对象,着重研究作为电池正极的氢氧化镍电极。通过不同的方法制备电极的活性物质Ni(OH)2,以Co、Zn和稀土作为掺杂剂对电极进行修饰,并对不同掺杂方式构成的电池进行了测试。用金相显微镜来观察Ni(OH)2的外观、颗粒大小;通过恒电流放电曲线比较各电极的放电性能,并通过XRD谱图了解样品的晶型结构。电池性能测试结果表明:采用配位沉淀法制备的Ni(OH)2晶体为最佳;在添加剂方面,Zn、Co、Sm均对镍电极的电化学性能影响较大。 相似文献
12.
在圆柱形电解槽中,采用直流电沉积方法在导电玻璃上沉积银纳米材料,制备了Ag/I-TO、Ag/CNTs/ITO复合电极,并以制得的复合电极做工作电极,测定两种电极在磷酸缓冲溶液中的循环伏安响应曲线。CNTs具有很高的比表面积,除了对银离子的反应具有催化作用外,还可能对带有负电荷的SCN-离子具有吸附作用。实验结果表明:银修饰的碳纳米管导电玻璃电极具有很好的电化学活性,可用于检测SCN^-。 相似文献
13.
本文在热丝化学气相沉积(HFCVD)系统上,采用不同的工艺参数进行了钛衬底掺硼金刚石(Ti/BDD)涂层电极的制备试验,研究了衬底温度和碳源浓度对Ti/BDD涂层电极质量的影响,优化了制备Ti/BDD涂层电极的工艺条件.结果表明,沉积Ti/BDD涂层电极最合适的衬底温度为770 ℃,最适宜的C/H为2.0%.采用循环伏安法研究了用优化的工艺参数制备的Ti/BDD涂层电极的电化学性能,结果表明Ti/BDD涂层电势窗口宽、析氧电位高、背景电流小,是一种有广阔应用前景的电极材料. 相似文献
14.
15.
16.
以稻壳为原料,氢氧化钠为活化剂,制备活性炭.进一步将该活性炭作为电极材料,以氢氧化钾溶液为电解液,组装超级电容器.采用X射线衍射(XRD)、氮气吸附脱附(BET)、扫描电镜(SEM)等手段,分析了不同活化温度对活性炭的比表面积及孔结构的影响,并利用恒流充放电、循环伏安等方法研究了电容器的电化学性能.结果表明:800 ℃活化下活性炭的比表面积最佳,为2760 m2/g,孔结构发达.此条件下,在6 mol/L的KOH电解液中,活性炭电容器比电容达267.2 F/g,等效内阻仅2.2 Ω,倍率性能好.经过5000次循环后,其电容保持率仍有83.7%,表明该稻壳基活性炭电极具有优异的充放电可逆性和循环稳定性. 相似文献
17.
18.
通过化学氧化、高温处理将天然鳞片石墨制成膨胀石墨(EG),采用原位聚合法制备了聚苯乙烯-膨胀石墨(PS-EG)插层复合物,并将PS-EG复合物与PS进行熔融共混,研究了PS-EG复合物含量对PS结构及性能的影响。结果表明,PS-EG的加入,使得PS的冲击强度和热性能提高,而拉伸强度下降;当PS-EG含量为9%(质量分数,下同)时,PS的冲击强度提高了63.4%;EG在复合材料中呈蠕虫状分布;PS-EG复合物的存在增加了复合材料的界面效应,冲击断面呈现孔洞式结构。 相似文献
19.