首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
夹层板轴向受压时屈曲后性能的有限元分析   总被引:1,自引:0,他引:1  
菅秀文  郭成喜 《工业建筑》2006,36(Z1):542-545
以Narayan Pokharel,Mahen Mahendran试验[1]模型为研究依据,用有限元法对受单向轴向压力作用的夹层板进行了屈曲以及屈曲后性能分析。根据Winter公式计算出了板件的有效宽度,并与有限元计算结果以及试验结果进行比较,发现当夹层板宽厚比较大时,Winter公式过高地估计了板件的有效宽度,结果是偏于不安全的。最后,提出了有效宽度的建议公式。  相似文献   

2.
Sandwich panels exhibit various types of failure modes depending on the steel face used. For the flat and lightly profiled sandwich panels, flexural wrinkling is an extremely important design criterion as the behaviour of these panels is governed mainly by flexural wrinkling. However, in the lightly profiled panels, when the depth or spacing of the ribs increases, flat plate buckling between the ribs occurs leading to the failure of the entire panel due to the interaction between local buckling and flexural wrinkling modes. Current design formulae for sandwich panels do not consider such interactive buckling effects. To obtain a safe design solution, this interactive buckling behaviour should be taken into account in the design of lightly profiled sandwich panels. Therefore a research project was undertaken to investigate the interactive buckling behaviour of lightly profiled panels with varying depths and spacings of the ribs using a series of experiments and finite element analyses. A new improved design formula was developed for the safe and economical design of lightly profiled panels that takes into account the interaction between local buckling and flexural wrinkling. This paper presents the details of this investigation, the results and the new design formula.  相似文献   

3.
Cold-formed steel structural members play a great role in modern steel structures due to their high strength and light weight. The behavior and strength of battened column members composed of slender angle sections are mainly governed by local buckling of angle legs or torsional buckling of the angle between batten plates. Moreover, local buckling depends on the interaction between the width–thickness ratio of angle leg, overall slenderness ratio of angle between batten plates and overall slenderness of column. Theoretical study has been carried out by a nonlinear material and geometrical finite element model. Numerous cases of slender battened column sections having different width–thickness angle leg ratios, overall slenderness ratios between batten plates and overall slenderness ratios are chosen in this study. Complete ultimate strength curves are drawn and different failure modes are studied by taking different member lengths, which produce local or torsional buckling of single angles between batten plates or overall buckling of the member. Empirical equations for the effect of shear deformation factor and the ultimate axial load capacities of members formed of battened slender angle sections are proposed. Strengths of axially loaded battened members predicted using finite element as well as the proposed empirical equations is compared with the design strengths obtained using North American and European codes. It is concluded that the design strengths predicted by North American and European codes are generally conservative, and these design rules have been shown to be reliable using reliability analysis.  相似文献   

4.
The availability of high strength steels and concrete leads to the use of thin steel plates in concrete-filled steel tubular beam-columns. However, the use of thin steel plates in composite beam-columns gives a rise to local buckling that would appreciably reduce the strength and ductility performance of the members. This paper studies the critical local and post-local buckling behavior of steel plates in concrete-filled thin-walled steel tubular beam-columns by using the finite element analysis method. Geometric and material nonlinear analyses are performed to investigate the critical local and post-local buckling strengths of steel plates under compression and in-plane bending. Initial geometric imperfections and residual stresses presented in steel plates, material yielding and strain hardening are taken into account in the nonlinear analysis. Based on the results obtained from the nonlinear finite element analyses, a set of design formulas are proposed for determining the critical local buckling and ultimate strengths of steel plates in concrete-filled steel tubular beam-columns. In addition, effective width formulas are developed for the ultimate strength design of clamped steel plates under non-uniform compression. The accuracy of the proposed design formulas is established by comparisons with available solutions. The proposed design formulas can be used directly in the design of composite beam-columns and adopted in the advanced analysis of concrete-filled thin-walled steel tubular beam-columns to account for local buckling effects.  相似文献   

5.
Cold-formed steel members are increasingly used as primary structural elements in the building industries around the world due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. However, their shear capacities are determined based on conservative design rules. For the shear design of LCB web panels, their elastic shear buckling strength must be determined accurately including the potential post-buckling strength. Currently the elastic shear buckling coefficients of LCB web panels are determined by assuming conservatively that the web panels are simply supported at the junction between their flange and web elements. Hence finite element analyses were conducted to investigate the elastic shear buckling behavior of LCBs. An improved equation for the higher elastic shear buckling coefficient of LCBs was proposed based on finite element analysis results and included in the ultimate shear capacity equations of the North American cold-formed steel codes. Finite element analyses show that relatively short span LCBs without flange restraints are subjected to a new combined shear and flange distortion action due to the unbalanced shear flow. They also show that significant post-buckling strength is available for LCBs subjected to shear. New equations were also proposed in which post-buckling strength of LCBs was included.  相似文献   

6.
Sandwich structures are increasingly employed in many practical applications thanks to their interesting compromise between lightweight and high mechanical properties. However, due to some specific geometric and material features, such structures are subject to global as well as local buckling phenomena, which lead to collapse in most cases. The buckling analysis of sandwich panels is therefore an important issue for their mechanical design. In this respect, this paper is devoted to the theoretical study of the elastic local/global buckling of rectangular sandwich plates under uniaxial or biaxial compression(-tension). Only classical sandwich materials are considered with homogeneous and isotropic core/skin layers. In the present formulation, a Love–Kirchhoff plate model is used to represent the thin skins, whereas the relatively thick core is modeled as a 3D continuous solid. Furthermore, the proposed approach is based on the elastic bifurcation theory in a general 3D framework, and leads to closed-form analytical expressions of the critical loadings and the corresponding bifurcation modes. The accuracy of the derived formulae is checked for both local and global modes by comparison with the results of finite element computations. Parametric analyses are finally performed, investigating primarily the influence of the aspect ratio of the plate and the ratio of the compressive (or tensile) loadings between both directions on the first buckling mode type and the associated minimum critical value.  相似文献   

7.
Web core panels, foam-filled sandwich panels with interior webs, are a structurally efficient option for transverse load bearing applications. In web core panels, the interaction between the webs and core material can have a substantial impact on web shear buckling strength and is a key element of lightweight structural design. The present work is an investigation of web buckling behavior in web core panels under a distributed load. To solve this problem, web shear buckling was analyzed for the case of pure shear loading with foam support, and this analytic model was extended to the case of panels with a transverse distributed load. The webs are modeled as simply supported plates resting on a Pasternak elastic foundation. To that end, a buckling model for plates on a Pasternak foundation is presented, along with closed-form approximations of the solution for square and infinitely long plates. An accurate model for the foundation constants is developed using energy methods. Applicability of the plate buckling model to web core panels with transverse loads is presented via a finite element study. In panels, the slenderness and spacing of the webs have a slight effect on the boundary conditions between the webs and face sheets. The effect is relatively small, however, and the model presented in this work underpredicts buckling strength by less than 25%. The model in this work is thus a reasonable approach to the practical design of web core panels.  相似文献   

8.
为研究矩形钢管混凝土壁板的屈曲后强度,根据平板的弹塑性屈曲理论并考虑残余应力的影响,确定了板件发生塑性屈曲、弹塑性屈曲和弹性屈曲的正则化界限宽厚比。采用试验验证的有限元模型进行了宽厚比为20~150、钢材屈服强度为275~960 MPa的矩形钢管混凝土壁板局部屈曲分析,以界限宽厚比为控制点,根据有限元结果拟合出了矩形钢管混凝土壁板的有效宽度计算式。研究结果表明:弹性屈曲板件的屈曲后强度提高程度显著高于弹塑性屈曲板件;屈曲后强度的提高程度与钢材屈服强度无明显相关性;与无面外约束钢板相比,混凝土的单侧约束作用可使板件的屈曲后强度普遍提高约50%;提出的矩形钢管混凝土壁板的正则化界限宽厚比和有效宽度计算式与试验结果吻合较好,有效宽度试验值比所提公式计算值平均增大7.2%,标准差为0.091。  相似文献   

9.
分别建立了钢-聚氨酯夹层板和普通钢板的有限元模型,在边界条件、加载情况均相同的条件下进行有限元稳定分析,夹层板采用板-实体-板结构模拟,结果表明在相同条件下,夹层板比普通钢板的屈曲强度均有较大程度的提高。同时进行了保持一定条件不变,分别改变夹芯层厚度、面层钢板厚度模拟分析,结果表明在一定范围内,夹芯层厚度与钢面板厚度增大,夹层板的屈曲临界荷载值也随之增大。夹芯层的抗弯刚度和横向剪切变形对板的影响不可忽略。  相似文献   

10.
为研究矩形钢管混凝土壁板的屈曲后强度,根据平板的弹塑性屈曲理论并考虑残余应力的影响,确定了板件发生塑性屈曲、弹塑性屈曲和弹性屈曲的正则化界限宽厚比。采用试验验证的有限元模型进行了宽厚比为20~150、钢材屈服强度为275~960 MPa的矩形钢管混凝土壁板局部屈曲分析,以界限宽厚比为控制点,根据有限元结果拟合出了矩形钢管混凝土壁板的有效宽度计算式。研究结果表明:弹性屈曲板件的屈曲后强度提高程度显著高于弹塑性屈曲板件;屈曲后强度的提高程度与钢材屈服强度无明显相关性;与无面外约束钢板相比,混凝土的单侧约束作用可使板件的屈曲后强度普遍提高约50%;提出的矩形钢管混凝土壁板的正则化界限宽厚比和有效宽度计算式与试验结果吻合较好,有效宽度试验值比所提公式计算值平均增大7.2%,标准差为0.091。  相似文献   

11.
LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel beam. The unique LSB section is produced by a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. To date, limited research has been undertaken on the shear buckling behaviour of LSBs with torsionally rigid, rectangular hollow flanges. For the shear design of LSB web panels, their elastic shear buckling strength must be determined accurately including the potential post-buckling strength. Currently the elastic shear buckling coefficients of web panels are determined by assuming conservatively that the web panels are simply supported at the junction between the flange and web elements. Therefore finite element analyses were carried out to investigate the elastic shear buckling behaviour of LSB sections including the effect of true support conditions at the junction between their flange and web elements. An improved equation for the higher elastic shear buckling coefficient of LSBs was developed and included in the shear capacity equations of Australian cold-formed steel codes. Predicted ultimate shear capacity results were compared with available experimental results, both of which showed considerable improvement to the shear capacities of LSBs. A study on the shear flow distribution of LSBs was also undertaken prior to the elastic buckling analysis study. This paper presents the details of this investigation and the results including the shear flow distribution of LSBs.  相似文献   

12.
《钢结构》2012,(2):82
建筑物中越来越多地使用冷成型钢梁作为楼板的辅助及受力构件,其在没有足够侧向约束时的性能和瞬时承载力将受到侧向扭转屈曲的影响。以往对侧向扭转屈曲的研究主要针对热成型卷边钢梁,因此需要对简单支撑下相同弯曲度冷成型卷边槽钢梁的特性进行数值模拟。采用业内广泛认可的有限元分析软件ABAQUS进行建模,对不同条件下冷成型钢梁微单元的侧向扭转屈曲性能和承载力进行分析和模拟。将瞬时承载力结果与冷成型钢结构规范中当前设计准则的预测结果进行比较并对其进行适当的修正。欧洲的设计规范较为保守,而澳大利亚、新西兰和北美的设计规范则较为宽泛。基于有限元分析结果,对规范中的瞬时承载力设计公式进行修正。阐述了参数分析的细节问题,修正了当前设计规范,提出了侧向扭转屈曲时冷成型卷边槽钢梁的新设计准则。  相似文献   

13.
The probabilistic distributions of buckling strengths for compressive plates of normal and bridge high-performance steels were obtained through numerical analyses in order to develop a nominal design strength and a corresponding safety factor. In the numerical analyses, Monte Carlo simulation was used in combination with the response surface method to reduce the effort associated with the finite element analyses. For each value of the slenderness parameter R, a response surface of the normalized local bucking strength was determined based on the results of 114 finite element analyses using different residual stresses and initial defections. The response surface is approximated as a simple algebraic function of the residual stress and the initial deflection. Monte Carlo simulation is then carried out in order to evaluate the probabilistic distribution of the local bucking strength. The mean values obtained in the present study approach those of a mean curve proposed based on experiments. The standard deviation of the present study was approximately half that obtained based on experimental results in the range of 0.6 <R<1.2.  相似文献   

14.
When crest-fixed thin trapezoidal steel cladding with closely spaced ribs is subjected to wind uplift/suction forces, local dimpling or pull-through failures occur prematurely at their screw connections because of the large stress concentrations in the cladding under the screw heads. Currently, the design of crest-fixed profiled steel cladding is mainly based on time consuming and expensive laboratory tests due to the lack of adequate design rules. In this research, a shell finite element model of crest-fixed trapezoidal steel cladding with closely spaced ribs was developed and validated using experimental results. The finite element model included a recently developed splitting criterion and other advanced features including geometric imperfections, buckling effects, contact modelling and hyperelastic behaviour of neoprene washers, and was used in a detailed parametric study to develop suitable design formulae for local failures. This paper presents the details of the finite element analyses, large scale experiments and their results including the new wind uplift design strength formulae for trapezoidal steel cladding with closely spaced ribs. The new design formulae can be used to achieve both safe and optimised solutions.  相似文献   

15.
《钢结构》2012,(4):81-82
对椭圆环形截面钢柱进行数值模拟和设计。建立准确的有限元模型,模拟两端固接的椭圆环形钢柱。对拉伸试验得出的材料非线性及初始局部(整体)几何缺陷都进行了考虑,通过收敛性研究,以获得最佳的单元网格尺寸。采用此数值模型,对100根柱试件进行参数化研究。对材料屈服、局部屈曲、弯曲屈曲及局部屈曲与弯曲屈曲同时发生的破坏模型进行了分析。将柱的承载力试验值和数值分析结果与基于北美规范、澳大利亚规范、新西兰规范和欧洲规范的计算值进行对比。另外,还采用了不适用于椭圆环形截面钢杆的直接强度法进行分析。对这些设计方法均进行了可靠度分析。  相似文献   

16.
The LiteSteel Beam (LSB) is a new hollow flange channel section developed using a patented dual electric resistance welding and cold-forming process. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a slender web, and is commonly used as flexural members. However, the LSB flexural members are subjected to a relatively new lateral distortional buckling mode, which reduces their moment capacities. Unlike lateral torsional buckling, the lateral distortional buckling of LSBs is characterised by simultaneous lateral deflection, twist and cross sectional change due to web distortion. Therefore a detailed investigation into the lateral buckling behaviour of LSB flexural members was undertaken using experiments and finite element analyses. This paper presents the details of suitable finite element models developed to simulate the behaviour and capacity of LSB flexural members subject to lateral buckling. The models included all significant effects that influence the ultimate moment capacities of such members, including material inelasticity, lateral distortional buckling deformations, web distortion, residual stresses, and geometric imperfections. Comparison of elastic buckling and ultimate moment capacity results with predictions from other numerical analyses and available buckling moment equations, and experimental results showed that the developed finite element models accurately predict the behaviour and moment capacities of LSBs. The validated model was then used in a detailed parametric study that produced accurate moment capacity data for all the LSB sections and improved design rules for LSB flexural members subject to lateral distortional buckling.  相似文献   

17.
This paper presents the numerical simulation and design of cold-formed steel oval hollow section columns. An accurate finite element model was developed to simulate the fixed-ended column tests of oval hollow sections. The material non-linearities obtained from tensile coupon tests as well as the initial local and overall geometric imperfections were incorporated in the finite element model. Convergence study was performed to obtain the optimized mesh size. A parametric study consisted of 100 columns was conducted using the verified numerical model. The failure modes of material yielding, local buckling and flexural buckling as well as interaction of local and flexural buckling were found in this study. The experimental column strengths and numerical results predicted by the parametric study were compared with the design strengths calculated using the current North American, Australian/New Zealand and European specifications for cold-formed steel structures. In addition, the direct strength method, which was developed for cold-formed steel members for certain cross-sections but not cover oval hollow sections, was used in this study. The reliability of these design rules was evaluated using reliability analysis.  相似文献   

18.
Response of stiffened and unstiffened plates subjected to blast loading   总被引:1,自引:0,他引:1  
This paper describes the results of dynamic analyses carried out on both stiffened and unstiffened panels using both simplified and advanced analytical techniques. For unstiffened panels with inplane restraint along their edges, the dynamic response of an imperfect panel was predicted using a large displacement elastic analysis based on Lagrange's equation, with the panel being treated as a shallow shell. For stiffened panels, the finite element (FE) technique was used to establish the validity of using the simplified technique to predict the inter-stiffener panel displacements for a simply supported panel. A parametric study has been carried out to analyse the effects of in-plane boundary conditions, local stiffener buckling and initial imperfections on the overall response. The significant effect of boundary conditions is demonstrated by including the actual boundary conditions of a test frame in the finite element modelling of a large-scale stiffened floorplate panel used in an experimental test series.  相似文献   

19.
Sandwich panels   总被引:2,自引:0,他引:2  
J.M. Davies 《Thin》1993,16(1-4):179-198
In recent years, there has been increasing interest in the use of structural sandwich panels as the cladding of buildings and a good deal of research and development has been carried out. This paper reviews the state of the art with regard to the structural design of elements consisting of two thin metal faces separated by a lightweight core. Various aspects are discussed but two are given particular attention, namely methods of global analysis and the local buckling of compressed face elements. The analysis of sandwich panels under all possible loading and boundary conditions no longer poses any problem. Classical solutions, approximate solutions and numerical methods such as finite elements all have their place and are reviewed in detail. Local buckling phenomena in sandwich elements are similar to those in other thin-walled metal elements with the added consideration that buckling is resisted by the core material. This leads to some quite complex analysis which requires simplification for practical design. The paper includes a useful bibliography of recent references.  相似文献   

20.
M.R. Bambach   《Thin》2006,44(10):1118-1128
Cold-formed open steel sections are comprised of component plates termed stiffened elements (webs) and unstiffened elements (flanges). The local buckling and post-local buckling behaviour of sections may be determined from the behaviour of the component plates. Much research effort has documented the theoretical elastic local buckling of plates and sections, however until recently few experimental studies have been reported on the local buckling and post-local buckling behaviour of unstiffened plates. This paper presents experimental and numerical studies of unstiffened plates and sections that contain them in both compression and bending, and in particular analyses the mechanism that provides post-buckling strength. It is shown that, as with stiffened elements, the mechanism is the post-local buckling redistribution of stress, however unlike stiffened elements this redistribution can occur to such an extent that tensile stresses commonly form in axially compressed slender elements. The stress distributions at ultimate are compared with current international cold-formed steel specifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号